Một bài toán có nhiều cách giải (1)


Hãy giải bài toán sau theo ít nhất 3 cách:

Bài toán. Cho q là số nguyên dương không phải là lập phương của một số nguyên. Chứng minh rằng tồn tại hằng số dương C sao cho với mỗi số nguyên dương n, ta có
\displaystyle \{nq^{\frac{1}{3}}\} + \{ nq^{\frac{2}{3}} \} \geq Cn^{-\frac{1}{2}}.

Gửi các bạn mới vào lớp 10 Chuyên toán: Một số cuốn sách nên có


Đây là bài trả lời cho câu hỏi: Em mới vào lớp 10 Chuyên toán, em nên có những cuốn sách nào?

0) Tài liệu giáo khoa Chuyên toán lớp 10 (gồm cả SBT).

1) Titu Andreescu and Zuming Feng, A Path to Combinatorics for Undergraduates

2) Titu Andreescu and Zuming Feng, 102 Combinatorial Problems 


3) Evan Chen, Euclidean Geometry in Mathematical Olympiads 


4) Titu Andreescu, Sam Korsky, and Cosmin Pohoata, Lemmas in Olympiad Geometry.


5) Các bài giảng số học của Đặng Hùng Thắng.


6) David Burton, Elementary Number Theory.


7) Phạm Kim Hùng, Sáng tạo bất đẳng thức (Tập 1 và 2).

IMO 2022 – Đề thi, đáp án, và kết quả


IMO 2022 diễn ra ở Oslo (Norway) từ 6/7 đến 16/7.

I. Danh sách đội tuyển Việt Nam

Ngô Quý Đăng (THPT chuyên KHTN, Hà Nội)

Phạm Việt Hưng (THPT chuyên KHTN, Hà Nội)

Vũ Ngọc Bình (THPT chuyên Vĩnh Phúc, Vĩnh Phúc)

Hoàng Tiến Nguyên (THPT chuyên Phan Bội Châu, Nghệ An)

Phạm Hoàng Sơn (Phổ thông Năng khiếu, ĐHQG thành phố Hồ Chí Minh)

Nguyễn Đại Dương (THPT chuyên Lam Sơn, Thanh Hóa)

Trưởng đoàn là GS. Lê Anh Vinh, Phó đoàn là PGS. Lê Bá Khánh Trình.

II. Đề thi và đáp án

Đáp án có ngay trong link trên AoPS các bạn nhé! Nhưng mà đừng bấm vào link vội, giải thử đã! 🙂

III. Kết quả

Đề năm nay dễ hơn đề các năm khác, có đến 10 thí sinh đạt 42/42 điểm. Có vẻ đề thi này đã không làm tốt chỗ phân loại cao?

HCV: \geq 34, HCB: \geq 29, HCĐ: \geq 23.

10 thí sinh cao điểm nhất! Đội tuyển Việt Nam có 42/42 sau nhiều năm. C05 chắc là đến từ Nga rồi?
Kết quả của đội tuyển Việt Nam: 2 HCV, 2 HCB, 2 HCĐ.
10 đội tuyển có tổng số điểm cao nhất! Đội tuyển Việt Nam đứng thứ 4. Năm nay các học sinh đến từ Nga không được tham gia với tư cách đội tuyển Nga, các em tham gia với tư cách cá nhân, tổng điểm của các em trong đội là 207.

Mathematical Olympiads 2021: Problems from Around the World


Trong bài này tôi sẽ giới thiệu một số đề thi Olympic Toán năm 2021. Các đề thi được đăng ở dạng một file pdf không link, không ad và không watermark.

[1] Đề thi chọn HSG QG của Việt Nam năm 2021.

[2] Đề thi chọn đội tuyển IMO 2021 của Việt Nam.

[3] Đề thi chọn HSG QG của Ấn Độ năm 2021.

[4] Đề thi chọn HSG QG của Trung Quốc năm 2021.

[5] Đề thi chọn đội tuyển IMO 2021 của Trung Quốc.

[6] Đề thi chọn HSG QG của Mỹ năm 2021.

[7] Đề thi chọn HSG QG của Nhật năm 2021.

[8] Đề thi chọn HSG QG của Canada năm 2021.

[9] Đề thi chọn HSG QG của Bungari năm 2021.

Update 17/7/2021.

A proof of Pick’s theorem


Hình tạo bởi một đường gấp khúc đóng và không tự cắt được gọi là đa giác đơn. Một tam giác cơ bản là một tam giác trong mặt phẳng tọa độ có các đỉnh là các điểm nguyên đồng thời trên biên và phần trong của nó không còn điểm nguyên nào khác. Định lí Pick cho một cách đơn giản tính diện tích đa giác đơn có các đỉnh nguyên.

Trong chứng minh định lí Pick ta cần dùng công thức tích diện tích của tam giác trong mặt phẳng tọa độ.

Định lí 1. Trong mặt phẳng tọa độ Oxy, cho tam giác ABC. Khi đó diện tích của tam giác ABC bằng \displaystyle \frac{1}{2}\left|(x_B-x_A)(y_C-y_A)-(y_B-y_A)(x_C-x_A)\right|. Nói riêng, với mỗi hai điểm MN ta có diện tích của tam giác OMN bằng \dfrac{1}{2}\mid x_My_N-y_Mx_N\mid.

Định lí 2. Mọi tam giác cơ bản đều có diện tích bằng \dfrac{1}{2}.

Chứng minh. Giả sử TAB là một tam giác cơ bản bất kỳ. Không mất tính tổng quát, xem T trùng với gốc tọa độ O. Ta cần chứng minh \mid x_1y_2-x_2y_1\mid =1, với (x_1;y_1)(x_2;y_2) lần lượt là tọa độ của AB.

Gọi K là điểm sao cho OAKB là hình bình hành. Giả sử M là một điểm nguyên nằm trong hoặc trên biên hình bình hành sao cho M khác các đỉnh. Khi đó M thuộc tam giác ABK và điểm N đối xứng với M qua tâm hình bình hành là điểm nguyên thuộc tam giác OAB nhưng khác các đỉnh, không thể xảy ra điều này do OAB là một tam giác cơ bản. Như vậy hình bình hành OAKB không chứa điểm nguyên nào khác bốn đỉnh của nó.

Giả sử P là một điểm nguyên bất kỳ. Vì \overrightarrow{OA}\overrightarrow{OB} là hai vector không cùng phương nên tồn tại cặp số thực (\alpha,\beta) để \overrightarrow{OP}=\alpha \overrightarrow{OA}+\beta \overrightarrow{OB}. Gọi P' là điểm xác định bởi \overrightarrow{OP'}=\{\alpha\} \overrightarrow{OA}+\{\beta\} \overrightarrow{OB}.\{\alpha\}\{\beta\} thuộc [0;1) nên P' thuộc hình bình hành OAKB, nhưng P' lại là một điểm nguyên, suy ra P' phải là một trong bốn đỉnh của hình bình hành. Dễ thấy P'\equiv O và do đó \alpha\beta là hai số nguyên.

Gọi \overrightarrow{i}\overrightarrow{j} lần lượt là các vector đơn vị đặt trên OxOy. Khi đó theo lập luận trên, tồn tại các cặp số nguyên (u,v)(u',v') để \overrightarrow{i}=u \overrightarrow{OA}+v \overrightarrow{OB}\overrightarrow{j}=u' \overrightarrow{OA}+v' \overrightarrow{OB}. Từ hai đẳng thức này ta có \begin{cases} 1=ux_1+vx_2\\ 0=uy_1+vy_2\end{cases}\begin{cases}0=u'x_1+v'x_2\\ 1=u'y_1+v'y_2,\end{cases} suy ra \displaystyle u=\frac{y_2}{D},v=-\frac{y_1}{D},u'=-\frac{x_2}{D}\displaystyle v'=\frac{x_1}{D}, trong đó D=x_1y_2-x_2y_1\not =0 do O,AB không thẳng hàng. Vì u, v, u'v' là các số nguyên nên x_1,x_2,y_1y_2 đều là bội của D, do đó D^2\mid D và bởi thế, D=\pm 1.

Định lí Pick. Cho P là một đa giác đơn có các đỉnh là các điểm nguyên, I là số điểm nguyên nằm trong và B là số điểm nguyên nằm trên biên của P. Khi đó ta có đẳng thức \displaystyle S_P=I+\frac{1}{2}B-1.

Chứng minh. Chia P thành N tam giác cơ bản. Gọi S là tổng các góc trong của tất cả các tam giác cơ bản đó. Ta sẽ tính S theo hai cách. Vì số tam giác là N nên S=N\pi.

Tổng tất cả các góc có đỉnh là một điểm nguyên nằm trong P bằng 2\pi, tổng tất cả các góc có đỉnh là một điểm nguyên nằm trên biên của P nhưng không phải đỉnh của P bằng \pi và tổng của tất cả các góc có đỉnh là đỉnh của P bằng (n-2)\pi, ở đây n là số đỉnh của P. Do đó S=2\pi I+\pi B-2\pi.

Suy ra N\pi=2\pi I+\pi B-2\pi\Rightarrow N=2I+B-2, mà S_P=\dfrac{1}{2}N, suy ra điều phải chứng minh.

USEMO – United States Ersatz Math Olympiad


USEMO là một cuộc thi toán dành cho tất cả học sinh trung học cơ sở và trung học phổ thông Hoa Kỳ. Giống như nhiều cuộc thi, mục tiêu của nó là phát triển sự quan tâm và khả năng trong toán học (chứ không phải là đo lường nó). Tuy nhiên, đây là một trong số ít các cuộc thi cho tất cả học sinh trung học cơ sở và trung học phổ thông Hoa Kỳ.

USEMO được lưu trữ trên trang AoPS. Cuộc thi này không được tài trợ bởi MAA.

Độ khó của các bài toán của cuộc thi tương tự như IMO.

Các bạn có thể tìm hiểu thêm về cuộc thi ở đây, hoặc download.

Một số trang về Olympic Toán


Tôi có post một số trang về Olympic Toán trên facebook  nhưng nó cứ chìm xuống khi đăng một bài khác, vì thế nên tôi lập topic này để lưu các link đó lại.

P. S. Hãy góp link bằng cách comment các bạn nhé! 🙂

Continue reading “Một số trang về Olympic Toán”