Mathematical Olympiads 2021: Problems from Around the World


Trong bài này tôi sẽ giới thiệu một số đề thi Olympic Toán năm 2021. Các đề thi được đăng ở dạng một file pdf không link, không ad và không watermark.

[1] Đề thi chọn HSG QG của Việt Nam năm 2021.

[2] Đề thi chọn đội tuyển IMO 2021 của Việt Nam.

[3] Đề thi chọn HSG QG của Ấn Độ năm 2021.

[4] Đề thi chọn HSG QG của Trung Quốc năm 2021.

[5] Đề thi chọn đội tuyển IMO 2021 của Trung Quốc.

[6] Đề thi chọn HSG QG của Mỹ năm 2021.

[7] Đề thi chọn HSG QG của Nhật năm 2021.

[8] Đề thi chọn HSG QG của Canada năm 2021.

Update 7/5/2021.

A proof of Pick’s theorem


Hình tạo bởi một đường gấp khúc đóng và không tự cắt được gọi là đa giác đơn. Một tam giác cơ bản là một tam giác trong mặt phẳng tọa độ có các đỉnh là các điểm nguyên đồng thời trên biên và phần trong của nó không còn điểm nguyên nào khác. Định lí Pick cho một cách đơn giản tính diện tích đa giác đơn có các đỉnh nguyên.

Trong chứng minh định lí Pick ta cần dùng công thức tích diện tích của tam giác trong mặt phẳng tọa độ.

Định lí 1. Trong mặt phẳng tọa độ Oxy, cho tam giác ABC. Khi đó diện tích của tam giác ABC bằng \displaystyle \frac{1}{2}\left|(x_B-x_A)(y_C-y_A)-(y_B-y_A)(x_C-x_A)\right|. Nói riêng, với mỗi hai điểm MN ta có diện tích của tam giác OMN bằng \dfrac{1}{2}\mid x_My_N-y_Mx_N\mid.

Định lí 2. Mọi tam giác cơ bản đều có diện tích bằng \dfrac{1}{2}.

Chứng minh. Giả sử TAB là một tam giác cơ bản bất kỳ. Không mất tính tổng quát, xem T trùng với gốc tọa độ O. Ta cần chứng minh \mid x_1y_2-x_2y_1\mid =1, với (x_1;y_1)(x_2;y_2) lần lượt là tọa độ của AB.

Gọi K là điểm sao cho OAKB là hình bình hành. Giả sử M là một điểm nguyên nằm trong hoặc trên biên hình bình hành sao cho M khác các đỉnh. Khi đó M thuộc tam giác ABK và điểm N đối xứng với M qua tâm hình bình hành là điểm nguyên thuộc tam giác OAB nhưng khác các đỉnh, không thể xảy ra điều này do OAB là một tam giác cơ bản. Như vậy hình bình hành OAKB không chứa điểm nguyên nào khác bốn đỉnh của nó.

Giả sử P là một điểm nguyên bất kỳ. Vì \overrightarrow{OA}\overrightarrow{OB} là hai vector không cùng phương nên tồn tại cặp số thực (\alpha,\beta) để \overrightarrow{OP}=\alpha \overrightarrow{OA}+\beta \overrightarrow{OB}. Gọi P' là điểm xác định bởi \overrightarrow{OP'}=\{\alpha\} \overrightarrow{OA}+\{\beta\} \overrightarrow{OB}.\{\alpha\}\{\beta\} thuộc [0;1) nên P' thuộc hình bình hành OAKB, nhưng P' lại là một điểm nguyên, suy ra P' phải là một trong bốn đỉnh của hình bình hành. Dễ thấy P'\equiv O và do đó \alpha\beta là hai số nguyên.

Gọi \overrightarrow{i}\overrightarrow{j} lần lượt là các vector đơn vị đặt trên OxOy. Khi đó theo lập luận trên, tồn tại các cặp số nguyên (u,v)(u',v') để \overrightarrow{i}=u \overrightarrow{OA}+v \overrightarrow{OB}\overrightarrow{j}=u' \overrightarrow{OA}+v' \overrightarrow{OB}. Từ hai đẳng thức này ta có \begin{cases} 1=ux_1+vx_2\\ 0=uy_1+vy_2\end{cases}\begin{cases}0=u'x_1+v'x_2\\ 1=u'y_1+v'y_2,\end{cases} suy ra \displaystyle u=\frac{y_2}{D},v=-\frac{y_1}{D},u'=-\frac{x_2}{D}\displaystyle v'=\frac{x_1}{D}, trong đó D=x_1y_2-x_2y_1\not =0 do O,AB không thẳng hàng. Vì u, v, u'v' là các số nguyên nên x_1,x_2,y_1y_2 đều là bội của D, do đó D^2\mid D và bởi thế, D=\pm 1.

Định lí Pick. Cho P là một đa giác đơn có các đỉnh là các điểm nguyên, I là số điểm nguyên nằm trong và B là số điểm nguyên nằm trên biên của P. Khi đó ta có đẳng thức \displaystyle S_P=I+\frac{1}{2}B-1.

Chứng minh. Chia P thành N tam giác cơ bản. Gọi S là tổng các góc trong của tất cả các tam giác cơ bản đó. Ta sẽ tính S theo hai cách. Vì số tam giác là N nên S=N\pi.

Tổng tất cả các góc có đỉnh là một điểm nguyên nằm trong P bằng 2\pi, tổng tất cả các góc có đỉnh là một điểm nguyên nằm trên biên của P nhưng không phải đỉnh của P bằng \pi và tổng của tất cả các góc có đỉnh là đỉnh của P bằng (n-2)\pi, ở đây n là số đỉnh của P. Do đó S=2\pi I+\pi B-2\pi.

Suy ra N\pi=2\pi I+\pi B-2\pi\Rightarrow N=2I+B-2, mà S_P=\dfrac{1}{2}N, suy ra điều phải chứng minh.

USEMO – United States Ersatz Math Olympiad


USEMO là một cuộc thi toán dành cho tất cả học sinh trung học cơ sở và trung học phổ thông Hoa Kỳ. Giống như nhiều cuộc thi, mục tiêu của nó là phát triển sự quan tâm và khả năng trong toán học (chứ không phải là đo lường nó). Tuy nhiên, đây là một trong số ít các cuộc thi cho tất cả học sinh trung học cơ sở và trung học phổ thông Hoa Kỳ.

USEMO được lưu trữ trên trang AoPS. Cuộc thi này không được tài trợ bởi MAA.

Độ khó của các bài toán của cuộc thi tương tự như IMO.

Các bạn có thể tìm hiểu thêm về cuộc thi ở đây, hoặc download.

Popoviciu’s theorem


Trong  bài này chúng tôi sẽ giới thiệu một công thức tính số nghiệm tự nhiên của phương trình ax+by=n, ở đây a,b là các số nguyên dương thỏa mãn (a,b)=1n là số tự nhiên.

Định lí. (Công thức Popoviciu)  Gọi N(a,b;n) là số các cặp số tự nhiên (x,y) sao cho ax+by=n, ở đây a,b là các số nguyên dương thỏa mãn (a,b)=1n là số tự nhiên. Khi đó

\displaystyle N(a,b;n)=\frac{n}{ab}-\left\{\frac{a^{-1}n}{b}\right\}-\left\{\frac{b^{-1}n}{a}\right\}+1, với a^{-1} là nghịch đảo modulo b của ab^{-1} là nghịch đảo modulo a của b.

Chứng minh. Gọi \displaystyle F(z)=\sum_{n=0}^{+\infty}N(a,b;n)z^n là hàm sinh của dãy số \{N(a,b;n)\}_{n\geq 0}. Ta có

\displaystyle F(z)=\sum_{k\in\mathbb{N}}\sum_{l\in\mathbb{N}}z^{ak}z^{bl}=\frac{1}{(1-z^a)(1-z^b)}.\quad (1)

(a,b)=1 nên đa thức (1-z^a)(1-z^b) có nghiệm là 1 với bội 2 và các nghiệm đơn \xi_a^k (k=1,2,\ldots,a-1), \xi_b^l (l=1,2,\ldots,b-1), ở đây \xi_a=\cos\dfrac{2\pi}{a}+i\sin \dfrac{2\pi}{a}\xi_b=\cos\dfrac{2\pi}{b}+i\sin \dfrac{2\pi}{b}. Kết hợp với (1) ta có tồn tại các số phức C_1,C_2; A_i; B_i sao cho

\displaystyle F(z)=\frac{C_1}{1-z}+\frac{C_2}{(1-z)^2}+\sum_{k=1}^{a-1}\frac{A_k}{1-\xi_a^{-k}z}+\sum_{l=1}^{b-1}\frac{B_l}{1-\xi_b^{-l}z}.\quad (2)

Để ý đến hệ số của z^n, từ (2) ta có

\displaystyle N(a,b;n)=C_1+C_2(n+1)+\sum_{k=1}^{a-1}A_k\xi_a^{-nk}+\sum_{l=1}^{b-1}B_l\xi_b^{-nl}.\quad (3)

Bây giờ ta sẽ đi tìm các số phức C_1,C_2; A_i; B_i từ đẳng thức

\displaystyle \frac{1}{(1-z^a)(1-z^b)}=\frac{C_1}{1-z}+\frac{C_2}{(1-z)^2}+\sum_{k=1}^{a-1}\frac{A_k}{1-\xi_a^{-k}z}+\sum_{l=1}^{b-1}\frac{B_l}{1-\xi_b^{-l}z}.\quad (4)

Nhân hai vế của (4) với (1-z)^2 và cho z\to 1 ta có C_2=\dfrac{1}{ab}, sau đó nhân hai vế của (4) với 1-z, để C_1 một bên và cho z\to 1 ta được C_1=\dfrac{a+b-2}{2ab}. Theo cùng một cách ta có

\displaystyle A_k=\frac{1}{a(1-\xi_a^{kb})},\quad B_l=\frac{1}{b(1-\xi_b^{la})}.

Thay vào (3) ta được

\displaystyle N(a,b;n)=\frac{n}{ab}+\frac{a+b}{2ab}+\frac{1}{a}\sum_{k=1}^{a-1}\frac{\xi_a^{-nk}}{1-\xi_a^{bk}}+\frac{1}{b}\sum_{l=1}^{b-1}\frac{\xi_b^{-nl}}{1-\xi_b^{al}}.\quad (5)

Từ (5) ta có \displaystyle N(a,1;n)=\frac{n}{a}+\frac{a+1}{2a}+\frac{1}{a}\sum_{k=1}^{a-1}\frac{\xi_a^{-nk}}{1-\xi_a^{k}}, mà \displaystyle N(a,1;n)=\left[\frac{n}{a}\right]+1, suy ra

\displaystyle \frac{1}{a}\sum_{k=1}^{a-1}\frac{\xi_a^{-nk}}{1-\xi_a^{k}}=\frac{1}{2}-\left\{\frac{n}{a}\right\}-\frac{1}{2a},

do đó \displaystyle \frac{1}{a}\sum_{k=1}^{a-1}\frac{\xi_a^{-nk}}{1-\xi_a^{bk}}=\frac{1}{a}\sum_{k=1}^{a-1}\frac{\xi_a^{-nb^{-1}k}}{1-\xi_a^{k}}=\frac{1}{2}-\left\{\frac{nb^{-1}}{a}\right\}-\frac{1}{2a},

chứng minh tương tự ta được

\displaystyle \frac{1}{b}\sum_{l=1}^{b-1}\frac{\xi_b^{-nl}}{1-\xi_b^{al}}=\frac{1}{2}-\left\{\frac{na^{-1}}{b}\right\}-\frac{1}{2b},

thay hai đẳng thức cuối cùng vào (5) ta có điều cần chứng minh. \Box

Một số trang về Olympic Toán


Tôi có post một số trang về Olympic Toán trên facebook  nhưng nó cứ chìm xuống khi đăng một bài khác, vì thế nên tôi lập topic này để lưu các link đó lại.

P. S. Hãy góp link bằng cách comment các bạn nhé! 🙂

Continue reading “Một số trang về Olympic Toán”

Burnside’s lemma


Cho X là một tập hợp và G là một nhóm. Ta nói G tác động trên X, hay X là một G-tập, nếu có hàm G\times X\to X, (g,x)\mapsto gx thoả mãn ex=x\forall x\in Xg_1(g_2x)=(g_1g_2)x\forall x\in X\forall g_1,g_2\in G, ở đây e là phần tử đơn vị của G.

Gìơ ta xét một G-tập X, với mỗi x\in X, ta gọi quỹ đạo của x là tập \{gx|g\in G\}. Các quỹ đạo khác nhau của các phần tử trong X làm thành một phân hoạch của X, thật vậy, quan hệ xRy nếu có g\in G để x=gy là một quan hệ tương đương trên X. Khi XG là các tập hữu hạn thì ta có thể tính số khối của phân hoạch này theo bổ đề sau đây.

Bổ đề Burnside. Nếu X là một G-tập hữu hạn (nghĩa là XG là các tập hữu hạn và X là một G-tập) và N là số các quỹ đạo khác nhau của các phần tử trong X thì N=\dfrac{1}{|G|}\sum_{g\in G}F(g), trong đó với mỗi g\in G, F(g) là số phần tử của tập \{x\in X|gx=x\}.

Tôi sẽ không đưa ra chứng minh nào của bổ đề này ở  đây, các bạn có thể tìm một chứng minh  trong sách Tổ hợp của Ngô Đắc Tân hay sách về lý thuyết nhóm của Rotman. Gìơ ta đi xét các áp dụng của bổ đề này vào giải các bài toán đếm, các bài tập này đều có trong sách của Rotman.

Bài 1. Cho nq là các số nguyên dương. Hỏi có bao nhiêu lá cờ gồm n mảnh sao cho mỗi mảnh mang một trong q màu cho trước?(Ví dụ một lá cờ như vậy là cờ của Pháp gồm 3 mảnh).

Lời giải. Vì khi ta tô màu một mặt của lá cờ thì mặt sau sẽ được xác định hoàn toàn màu. Nên số lá cờ bằng số cách tô bảng 1\times n bởi q màu, hai cách tô là như nhau nếu nó ở dạng như hình dưới đây.

(Trong hình trên các c_i là các màu.)

Gọi X là tập các bộ (c_1,c_2,\cdots,c_n) với c_i là một trong q màu đã cho với mỗi i. Ký hiệu S_n là nhóm các hoán vị trên \{1,2,\cdots,n\}, G là nhóm con cyclic sinh bởi hoán vị f của S_n, ở đây f(i)=n+1-i\forall i. Ta cho G tác động trên X theo luật f(c_1,c_2,\cdots,c_n)=(c_n,c_{n-1},\cdots,c_1). Như trên đã phân tích, ta chỉ cần đếm số N các quỹ đạo của các phần tử của x theo tác động này là xong. Theo bổ đề Burnside, ta chỉ cần tính F(id)F(f). Dễ thấy F(id)=|X|=q^n theo quy tắc nhân. Để tính F(f), ta chú ý rằng (c_1,c_2,\cdots,c_n)\in X không thay đổi khi tác động f nếu và chỉ nếu c_1=c_n,c_2=c_{n-1},\cdots, vậy cùng theo quy tắc nhân ta có F(f)=q^{[\dfrac{n+1}{2}]}. Như thế đáp số của bài toán là \dfrac{1}{2}(q^n+q^{[\dfrac{n+1}{2}]}).

Bài 2. Cho nq là các số nguyên dương. Chứng minh rằng có

\dfrac{1}{4}(q^{n^2}+2q^{[\dfrac{n^2+3}{4}]}+q^{[\dfrac{n^2+1}{2}]}) cách tô màu bảng vuông n\times n bởi q màu.

Lời giải sơ lược. Lời giải y hệt như trường hợp trên. Ta đánh số các ô của bảng theo kiểu xoáy ốc, chia hai trường hợp n chẵn, lẻ cho dễ đánh số. Tập X bây giờ là tập tất cả các bộ (c_1,c_2,\cdots,c_{n^2}), nhóm G bây giờ là nhóm con cyclic cấp 4 sinh bởi phép quay +90^0 của S_{n^2}.

Chú ý.  Khi n=3,q=n ta có bài số 5 trong VMO 2010.