IMO 2018 training (1)


Chào các bạn đồng nghiệp,

đây là một số bài toán tôi dùng để luyện cho đội IMO 2018. Tuyển tập này gồm nhiều phần, đây là phần thứ nhất.

Bài 1. Cho \displaystyle a_1, a_2, \dots, a_{2^{2018}} là các số nguyên dương không lớn hơn \displaystyle 2018 sao cho với mỗi \displaystyle n \leq 2^{2018}, \displaystyle a_1a_2 \dots a_{n} +1 là số chính phương. Chứng minh rằng tồn tại \displaystyle i sao cho \displaystyle a_i=1.
Bài 2. Cho \displaystyle (a_n)_{n\geq 1} là một dãy các số nguyên dương thỏa mãn
\displaystyle a_{n+1}=[\sqrt{a_n}]+[\sqrt[3]{a_n}]+\cdots+[\sqrt[n+1]{a_n}],\quad \forall n\in\mathbb{N}^*. Chứng minh rằng với mỗi số nguyên tố \displaystyle p, có vô hạn các số hạng của dãy chia hết cho \displaystyle p.
Bài 3. Cho số nguyên \displaystyle k>1. Dãy số \displaystyle a_1,a_2, \cdots xác định bởi \displaystyle a_1=1, a_2=k\displaystyle a_{n+1}-(k+1)a_n+a_{n-1}=0,\,\forall n>1. Tìm tất cả các số nguyên dương \displaystyle n sao cho \displaystyle a_n là một lũy thừa của \displaystyle k.
Bài 4. Hai dãy số \displaystyle \{u_{n}\}, \displaystyle \{v_{n}\} xác định bởi \displaystyle u_{0} =u_{1} =1 ,\displaystyle u_{n}=2u_{n-1}-3u_{n-2} \displaystyle (n\geq 2), \displaystyle v_{0} =a, v_{1} =b , v_{2}=c ,\displaystyle v_{n}=v_{n-1}-3v_{n-2}+27v_{n-3} \displaystyle (n\geq 3). Giả sử có số nguyên dương \displaystyle N sao cho với mỗi \displaystyle n> N ta có \displaystyle u_{n}|v_{n}. Chứng minh rằng \displaystyle 3a=2b+c.
Bài 5. Với mỗi số thực \displaystyle x, gọi \displaystyle M(x) là tập tất cả các số nguyên dương \displaystyle q thỏa mãn: tồn tại số nguyên \displaystyle p sao cho \displaystyle \left|x - \dfrac{p}{q}\right|<\dfrac{1}{10q}. Chứng minh nếu hai số vô tỷ \displaystyle \alpha\displaystyle \beta thỏa mãn \displaystyle M(\alpha)=M(\beta) thì \displaystyle \alpha+\beta hoặc \displaystyle \alpha- \beta là một số nguyên.
Bài 6. Cho \displaystyle M là một tập con của \displaystyle \mathbb{R} thỏa mãn đồng thời các điều kiện:
a) Với mọi \displaystyle x \in M, n \in \mathbb{Z}, ta có \displaystyle x+n \in M.
b) Với mọi \displaystyle x \in M, ta có \displaystyle -x \in M.
c) \displaystyle M\displaystyle \mathbb{R}\setminus M chứa một đoạn có độ dài lớn hơn \displaystyle 0.
Với mỗi \displaystyle x, đặt \displaystyle M(x) = \{ n \in \mathbb{Z}^{+} | nx \in M \}. Chứng minh rằng nếu \displaystyle \alpha,\beta là các số vô tỷ thỏa mãn \displaystyle M(\alpha) = M(\beta) thì \displaystyle \alpha + \beta hoặc \displaystyle \alpha - \beta là số hữu tỷ. Continue reading “IMO 2018 training (1)”

Đề thi chọn đội tuyển Trung Quốc tham dự IMO 2018 (China TST 2018) – Phần 2


Mời các bạn xem phần 1 ở https://nttuan.org/2018/04/02/chinatst2018-test1/


Ngày thứ nhất
Bài 1. Cho tam giác \displaystyle ABC\displaystyle D là một điểm di động trên cạnh \displaystyle BC. Điểm \displaystyle E và điểm \displaystyle F lần lượt thuộc các cạnh \displaystyle AB\displaystyle AC sao cho \displaystyle BE=CD\displaystyle CF=BD. \displaystyle (BDE)\displaystyle (CDF) cắt nhau tại hai điểm khác nhau \displaystyle P\displaystyle D. Chứng minh tồn tại điểm cố định \displaystyle Q sao cho \displaystyle QP là hằng số.
Bài 2. Với mỗi số nguyên dương \displaystyle n, \textit{một phân hoạch nguyên} của \displaystyle n là một cách viết \displaystyle n thành tổng của các số nguyên dương (không kể thứ tự), số phân hoạch nguyên của \displaystyle n ký hiệu bởi \displaystyle p\left ( n \right ). Tìm tất cả các số nguyên dương \displaystyle n sao cho
\displaystyle p\left ( n \right )+p\left ( n+4 \right )=p\left ( n+2 \right )+p\left ( n+3 \right ).
Bài 3. Cho hai số nguyên dương \displaystyle p,q. Có một cái bảng trên đó viết \displaystyle n số nguyên dương. Cho phép thực hiện phép toán sau: Chọn hai số bằng nhau \displaystyle a,a trên bảng và thay chúng bởi \displaystyle a+p,a+q. Tìm giá trị nhỏ nhất của \displaystyle n sao cho ta có thể thực hiện vô hạn lần phép toán trên. Continue reading “Đề thi chọn đội tuyển Trung Quốc tham dự IMO 2018 (China TST 2018) – Phần 2”

Đề thi chọn đội tuyển Trung Quốc tham dự IMO 2018 (China TST 2018) – Phần 1


Ngày thứ nhất
Bài 1. Cho \displaystyle p;q là các số thực dương có tổng bằng \displaystyle 1. Chứng minh rằng với mỗi bộ \displaystyle n số thực \displaystyle (y_1,y_2,...,y_n), tồn tại bộ \displaystyle n số thực \displaystyle (x_1,x_2,...,x_n) sao cho \displaystyle p\cdot \max\{x_i,x_{i+1}\} + q\cdot \min\{x_i,x_{i+1}\} = y_i với mỗi \displaystyle i=1,2,...,2017, ở đây \displaystyle x_{2018}=x_1.
Bài 2. Một số nguyên dương \displaystyle n được gọi là tốt nếu \displaystyle 2018| d(n). Tìm tất cả các số nguyên dương \displaystyle k sao cho tồn tại cấp số cộng vô hạn có công sai \displaystyle k và mọi số hạng của nó là tốt.
Bài 3. Đường tròn \displaystyle \omega tiếp xúc với các cạnh \displaystyle AB, \displaystyle AC của tam giác \displaystyle ABC tại \displaystyle D, \displaystyle E tương ứng, sao cho \displaystyle D\neq B, \displaystyle E\neq C\displaystyle BD+CE<BC. \displaystyle F, \displaystyle G nằm trên \displaystyle BC sao cho \displaystyle BF=BD, \displaystyle CG=CE. \displaystyle DG cắt \displaystyle EF tại \displaystyle K. \displaystyle L nằm trên cung nhỏ \displaystyle DE của \displaystyle \omega sao cho tiếp tuyến tại \displaystyle L của \displaystyle \omega song song với \displaystyle BC. Chứng minh rằng tâm nội tiếp của \displaystyle \triangle ABC nằm trên \displaystyle KL. Continue reading “Đề thi chọn đội tuyển Trung Quốc tham dự IMO 2018 (China TST 2018) – Phần 1”

Đề thi chọn đội tuyển Trung Quốc tham dự IMO 2017 (China TST 2017) – Phần 5


Các bạn có thể xem phần 4 tại https://nttuan.org/2018/03/07/chinatst2017-test4/

Ngày thứ nhất
Bài 1. Cho số nguyên \displaystyle n\ge 3. Xét dãy \displaystyle a_1,a_2,...,a_n, nếu \displaystyle (a_i,a_j,a_k) thỏa mãn \displaystyle i+k=2j\, (i<j<k)\displaystyle a_i+a_k\ne 2a_j ta nói nó là tốt. Nếu một dãy chứa ít nhất một bộ ba tốt thì nó chứa ít nhất bao nhiêu bộ ba tốt?
Bài 2. Tìm số nguyên dương \displaystyle m nhỏ nhất có tính chất: với mỗi đa thức \displaystyle f(x) với hệ số thực, tồn tại đa thức \displaystyle g(x) với hệ số thực có bậc không lớn hơn $m$ sao cho tồn tại \displaystyle 2017 số khác nhau \displaystyle a_1,a_2,...,a_{2017} thỏa mãn \displaystyle g(a_i)=f(a_{i+1}) với mọi \displaystyle i=1,2,...,2017. Ở đây chỉ số lấy theo modulo \displaystyle 2017.
Bài 3. Với một điểm hữu tỷ \displaystyle (x,y), nếu \displaystyle xy là số nguyên chia hết cho \displaystyle 2 nhưng không chia hết cho \displaystyle 3 ta tô nó màu đỏ, nếu \displaystyle xy là số nguyên chia hết cho \displaystyle 3 nhưng không chia hết cho \displaystyle 2 ta tô nó màu xanh. Tồn tại hay không một đoạn thẳng chứa đúng \displaystyle 2017 điểm xanh và đúng \displaystyle 58 điểm đỏ? Continue reading “Đề thi chọn đội tuyển Trung Quốc tham dự IMO 2017 (China TST 2017) – Phần 5”

Đề thi chọn đội tuyển Trung Quốc tham dự IMO 2017 (China TST 2017) – Phần 4


Các bạn có thể xem phần 3 tại https://nttuan.org/2017/04/14/topic-880/

Ngày thứ nhất
Bài 1. Chứng minh rằng \displaystyle\sum_{k=0}^{58}C_{2017+k}^{58-k}C_{2075-k}^{k}=\sum_{p=0}^{29}C_{4091-2p}^{58-2p}.
Bài 2. Cho tam giác \displaystyle ABC, đường tròn bàng tiếp góc \displaystyle A tiếp xúc với cạnh \displaystyle BC, đường thẳng \displaystyle AB\displaystyle AC lần lượt tại \displaystyle E,D,F. \displaystyle EZ là đường kính của đường tròn. \displaystyle B_1\displaystyle C_1 thuộc \displaystyle DF sao cho \displaystyle BB_1\perp{BC}, \displaystyle CC_1\perp{BC}. Đường thẳng \displaystyle ZB_1,ZC_1 cắt \displaystyle BC tại \displaystyle X,Y tương ứng. \displaystyle EZ cắt \displaystyle DF tại \displaystyle H, \displaystyle ZK vuông góc với \displaystyle FD tại \displaystyle K. Chứng minh rằng nếu \displaystyle H là trực tâm của tam giác \displaystyle XYZ thì \displaystyle H,K,X,Y cùng nằm trên một đường tròn.
Bài 3. Tìm số các bộ \displaystyle (x_1,...,x_{100}) thỏa mãn đồng thời ba điều kiện
i) \displaystyle x_1,...,x_{100}\in\{1,2,..,2017\};
ii) \displaystyle 2017|x_1+...+x_{100};
iii) \displaystyle 2017|x_1^2+...+x_{100}^2. Continue reading “Đề thi chọn đội tuyển Trung Quốc tham dự IMO 2017 (China TST 2017) – Phần 4”

IMO 2017 training (2)


Chào các bạn đồng nghiệp,

đây là một số bài toán tôi dùng để luyện cho đội IMO 2017. Tuyển tập này gồm nhiều phần, đây là phần thứ hai.

Các bạn có thể xem phần đầu ở https://nttuan.org/2017/08/01/imo-2017-training-1/


Bài 1. Cho số nguyên dương \displaystyle n>1 và dãy số Fibonacci xác định như sau \displaystyle f_1=f_2=1, \displaystyle f_{k+2}=f_{k+1}+f_k,\,\forall k\in\mathbb{N}^*. Chứng minh rằng nếu \displaystyle a\displaystyle b là các số nguyên dương sao cho \displaystyle \dfrac{a}{b} nằm giữa hai phân số \displaystyle \dfrac{f_n}{f_{n-1}}\displaystyle \dfrac{f_{n+1}}{f_{n}} thì \displaystyle b\geq f_{n+1}.
Bài 2. (VMO 2013) Cho trước một số số tự nhiên được viết trên một đường thẳng. Ta thực hiện các bước điền số lên đường thẳng như sau: tại mỗi bước, trước tiên xác định tất cả các cặp số kề nhau hiện có trên đường thẳng theo thứ tự từ trái qua phải, sau đó điền vào giữa mỗi cặp một số bằng tổng của hai số thuộc cặp đó. Hỏi sau \displaystyle 2013 bước, số \displaystyle 2013 xuất hiện bao nhiêu lần trên đường thẳng trong các trường hợp sau:
a) Các số cho trước là: \displaystyle 1\displaystyle 1000?
b) Các số cho trước là: \displaystyle 1,2,...,1000 và được xếp theo thức tự tăng dần từ trái qua phải?
Bài 3. Dãy hữu hạn các số nguyên \displaystyle a_1, a_2, \dots, a_n được gọi là chính quy nếu tồn tại số thực \displaystyle x thỏa mãn \displaystyle \left\lfloor kx \right\rfloor = a_k với mọi \displaystyle k=1, 2,\cdots, n. Cho dãy chính quy \displaystyle a_1, a_2, \dots, a_n, với \displaystyle 1 \le k \le n ta nói \displaystyle a_k là số hạng bắt buộc nếu dãy \displaystyle a_1, a_2, \dots, a_{k-1}, b chính quy khi và chỉ khi \displaystyle b = a_k. Tìm số lớn nhất các số hạng bắt buộc của một dãy chính quy dài \displaystyle 1000.
Bài 4. Cho \displaystyle \nu là một số vô tỷ dương, và \displaystyle m là một số nguyên dương. Một cặp \displaystyle (a,b) các số nguyên dương được gọi là tốt nếu
\displaystyle a \left \lceil b\nu \right \rceil - b \left \lfloor a \nu \right \rfloor = m. Một cặp tốt \displaystyle (a,b) được gọi là rất tốt nếu không cặp nào trong hai cặp \displaystyle (a-b,b), \displaystyle (a,b-a) là tốt. Chứng minh rằng số cặp rất tốt bằng tổng các ước dương của \displaystyle m.
Bài 5. Cho \displaystyle m,n là các số nguyên dương thỏa mãn \displaystyle m \ge n. Gọi \displaystyle S là tập tất cả các cặp \displaystyle (a,b) các số nguyên dương nguyên tố cùng nhau thỏa mãn \displaystyle a,b \le m\displaystyle a+b > m. Với mỗi \displaystyle (a,b)\in S, xét nghiệm tự nhiên \displaystyle (u,v) của phương trình \displaystyle au - bv = n sao cho \displaystyle v nhỏ nhất, và gọi \displaystyle I(a,b) là khoảng \displaystyle (v/a, u/b). Chứng minh rằng \displaystyle I(a,b) \subset (0,1) với mọi \displaystyle (a,b)\in S và mỗi số vô tỷ \displaystyle \alpha\in(0,1) thuộc \displaystyle I(a,b) với đúng \displaystyle n cặp phân biệt \displaystyle (a,b)\in S.
Bài 6. Một số nguyên dương \displaystyle q được gọi là mẫu phù hợp của số thực \displaystyle \alpha nếu \displaystyle \displaystyle |\alpha - \dfrac{p}{q}|<\dfrac{1}{10q} với số nguyên \displaystyle p nào đó. Chứng minh nếu hai số vô tỷ \displaystyle \alpha\displaystyle \beta có cùng tập các mẫu phù hợp thì \displaystyle \alpha+\beta hoặc \displaystyle \alpha- \beta là một số nguyên. Continue reading “IMO 2017 training (2)”

China TST 2003 – Test 3/ Problem 3


Bài toán. Cho \displaystyle x_0+\sqrt{2003}y_0 là nghiệm nguyên dương nhỏ nhất của phương trình Pell \displaystyle x^2-2003y^2=1. Tìm tất cả các nghiệm nguyên dương \displaystyle (x,y) của phương trình sao cho \displaystyle x_0 chia hết cho mọi ước nguyên tố của \displaystyle x.

Lời giải. Từ giả thiết, tồn tại số nguyên dương \displaystyle n sao cho \displaystyle x+\sqrt{2003}y=(x_0+\sqrt{2003}y_0)^n.

Xét hai trường hợp:

Trường hợp 1: \displaystyle n chẵn.

Ta có \displaystyle x\equiv 2003^{n/2}y_0^n\pmod{x_0}, trái với giả thiết \displaystyle x_0 chia hết cho mọi ước nguyên tố của \displaystyle x. Continue reading “China TST 2003 – Test 3/ Problem 3”

China TST 2014 – Test 3/Problem 3


Bài toán.  Chứng minh rằng không tồn tại cặp (x,y) các số nguyên dương thỏa mãn \displaystyle (x+1) (x+2)\cdots (x+2014)= (y+1) (y+2)\cdots (y+4028).

Lời giải. Tồn tại số nguyên dương i sao cho \displaystyle v_2(x+i)=\max_{1\leq j\leq 2014} v_2(x+j). Suy ra với mỗi 1\leq j\leq 2014, j\not=i ta có v_2(x+j)=v_2(x+i+(j-i))=v_2(j-i), thật vậy, không thể có v_2(j-i)>v_2(x+i), vì nếu không, v_2(j-i)>v_2(x+i)\,\forall i, do đó v_2(j-i)\geq 11 vì trong vế trái sẽ có số chia hết cho 1024, suy ra |j-i|\geq 2^{11}, vô lý. Continue reading “China TST 2014 – Test 3/Problem 3”

VMO training 2017 – Part 5


Các bạn có thể xem phần trước ở https://nttuan.org/2017/01/06/topic-852/


Trong bài viết này tôi sẽ giới thiệu một số lời giải của bài toán sau: Cho (s_n)_{n\geq 1}(t_n)_{n\geq 1} là hai dãy các số hữu tỷ thỏa mãn đồng thời các điều kiện sau:

1) (s_n)_{n\geq 1}(t_n)_{n\geq 1} không phải là dãy hằng;

2) \forall i,j\in\mathbb{N}^*,\quad (s_i-s_j)(t_i-t_j)\in\mathbb{Z}.

Chứng minh rằng tồn tại số hữu tỷ r sao cho r(s_i-s_j)\in\mathbb{Z}\dfrac{t_i-t_j}{r}\in\mathbb{Z},\quad\forall i,j\in\mathbb{N}^*.

Đây là bài toán số 6 trong đề thi chọn HSG QG của Mĩ năm 2009 (USAMO 2009).

Lời giải 1. Ta có ba nhận xét sau:

1) Nếu \sigma:\mathbb{N}^*\to \mathbb{N}^* là một song ánh thì hai dãy (s_{\sigma(n)})_{n\geq 1}(t_{\sigma(n)})_{n\geq 1} cũng thỏa mãn các giả thiết của bài toán;

2) Nếu s,t là các số hữu tỷ thì hai dãy (s_{n}+s)_{n\geq 1}(t_{n}+t)_{n\geq 1} cũng thỏa mãn các giả thiết của bài toán.

3) Tồn tại cặp chỉ số (i,j) sao cho (s_i-s_j)(t_i-t_j)\not=0.

Thật vậy, do dãy (s_i) không phải dãy hằng nên tồn tại (i,j) sao cho s_i\not=s_j. Nếu t_i\not=t_j thì (i,j) là cặp phải tìm. Nếu t_i=t_j, ta chọn k sao cho t_k\not=t_i, khi s_k=s_i ta chọn (j,k), khi s_k\not=s_i ta chọn (k,i).

Trở lại bài toán.

Bởi các nhận xét trên ta có thể giả sử s_1=t_1=0,s_2\not=0t_2\not=0.

Ta sẽ chứng minh tồn tại các số hữu tỷ dương  A,B sao cho AB, As_jBt_j là các số nguyên với mọi j.

Với mọi i,j ta có (s_i-s_1)(t_i-t_1)=s_it_i(s_i-s_j)(t_i-t_j)=s_it_i+s_jt_j-(s_it_j+s_jt_i), suy ra s_it_is_it_j+s_jt_i là các số nguyên. Viết s_j,t_j dưới dạng tối giản ta được \displaystyle s_j=\frac{p_j}{q_j},t_j=\frac{u_j}{v_j},\quad\forall j. Theo trên ta có s_2t_j+s_jt_2 là số nguyên với mọi j, suy ra với mọi j ta có q_j|u_2q_2. Chọn A=|q_2u_2|>0 ta có As_j là số nguyên với mọi j. Tương tự ta cũng tìm được số nguyên dương B sao cho Bt_j là số nguyên với mọi j.

Chọn cặp (A,B) như trên sao cho AB nhỏ nhất, ta thấy AB phải bằng 1 và khi đó bài toán sẽ được giải. Thật vậy, nếu AB>1 thì nó có ước nguyên tố p, suy ra ABs_jt_j=(As_j)(Bt_j) chia hết cho p với mọi j, do đó với mọi j thì As_j hoặc Bt_j sẽ chia hết cho p. Xét các trường hợp:

Trường hợp 1: p chia hết As_j với mọi j.

Ta thấy cặp (A/p,B) cũng thỏa mãn và có tích bằng \dfrac{AB}{p}<AB, vô lí.

Trường hợp 2: Tồn tại j để p không chia hết As_j.

Khi đó ta có Bt_j chia hết cho pBt_i không chia hết cho p với i nào đấy (do cách chọn (A,B)), suy ra AB(s_it_j+s_jt_i)-(As_i)(Bt_j)=(As_j)(Bt_i) không chia hết cho p, vô lí.

Lời giải 2. Đây là lời giải của Paul Christiano, huy chương Bạc tại IMO 2008.

Ta cho các số hữu tỷ trong lời giải này đều ở dạng tối giản.

Không mất tính tổng quát ta có thể giả sử s_1=t_1= 0, t_2\not=0s_2 = 1. Khi đó t_2=k là số nguyên (vì (s_2 - s_1)(t_2 - t_1) là số nguyên), và

(s_i - 1)(t_i - k) = s_it_i + k - (t_i + ks_i) \in \mathbb{Z},\quad i\in\mathbb{N}^*.s_it_i = (s_i - 0)(t_i - 0) = (s_i - s_1)(t_i - t_1)\in\mathbb{Z},\quad\forall i\in\mathbb{N}^*, suy ra t_i + ks_i \in \mathbb{Z},\quad \forall i\in\mathbb{N}^*. Ta thấy ks_i phải là số nguyên với mọi số nguyên dương i, thật vậy nếu tồn tại số nguyên dương i sao cho ks_i \not\in \mathbb{Z} thì mẫu của s_i có ước nguyên tố p không chia hết k, suy ra t_i+ks_i không phải là số nguyên vì mẫu của t_i cũng không chia hết cho p (do s_it_i là số nguyên), vô lí. Từ đó ta có t_i \in \mathbb{Z} với mỗi số nguyên dương i.

Nếu cần thì chia các số hạng của dãy (t_i) cho cùng một số nguyên dương và nhân các số hạng của dãy (s_i) với số nguyên dương đó, ta có thể coi ước chung lớn nhất của tất cả các số hạng của dãy (t_i) bằng 1, và tất nhiên, vẫn có số nguyên k\not=0 thỏa mãn ks_i\in\mathbb{Z} với mọi số nguyên dương i.

Ta sẽ chứng minh rằng s_i\in\mathbb{Z} với mọi số nguyên dương i, và khi đó bài toán sẽ được giải hoàn toàn. Thật vậy, giả sử tồn tại số nguyên dương i sao cho s_i không phải là số nguyên. Khi đó có số nguyên tố p là ước của mẫu của s_i. Gọi j là số nguyên dương thỏa mãn p không chia hết t_j (tồn tại j như thế vì ước chung lớn nhất của các t_n bằng 1). Vì s_it_i là số nguyên nên p chia hết t_i, do đó t_i - t_j không chia hết cho p. Vì s_jt_j là số nguyên và p không chia hết t_j nên p không chia hết mẫu của s_j, do đó s_i - s_j có mẫu không chia hết cho p. Nhưng khi đó (s_i - s_j)(t_i-t_j) có mẫu chia hết cho p, và bởi thế nó không phải là số nguyên, vô lí.

Continue reading “VMO training 2017 – Part 5”