IMO 2017 training (2)


Chào các bạn đồng nghiệp,

đây là một số bài toán tôi dùng để luyện cho đội IMO 2017. Tuyển tập này gồm nhiều phần, đây là phần thứ hai.

Các bạn có thể xem phần đầu ở https://nttuan.org/2017/08/01/imo-2017-training-1/


Bài 1. Cho số nguyên dương \displaystyle n>1 và dãy số Fibonacci xác định như sau \displaystyle f_1=f_2=1, \displaystyle f_{k+2}=f_{k+1}+f_k,\,\forall k\in\mathbb{N}^*. Chứng minh rằng nếu \displaystyle a\displaystyle b là các số nguyên dương sao cho \displaystyle \dfrac{a}{b} nằm giữa hai phân số \displaystyle \dfrac{f_n}{f_{n-1}}\displaystyle \dfrac{f_{n+1}}{f_{n}} thì \displaystyle b\geq f_{n+1}.
Bài 2. (VMO 2013) Cho trước một số số tự nhiên được viết trên một đường thẳng. Ta thực hiện các bước điền số lên đường thẳng như sau: tại mỗi bước, trước tiên xác định tất cả các cặp số kề nhau hiện có trên đường thẳng theo thứ tự từ trái qua phải, sau đó điền vào giữa mỗi cặp một số bằng tổng của hai số thuộc cặp đó. Hỏi sau \displaystyle 2013 bước, số \displaystyle 2013 xuất hiện bao nhiêu lần trên đường thẳng trong các trường hợp sau:
a) Các số cho trước là: \displaystyle 1\displaystyle 1000?
b) Các số cho trước là: \displaystyle 1,2,...,1000 và được xếp theo thức tự tăng dần từ trái qua phải?
Bài 3. Dãy hữu hạn các số nguyên \displaystyle a_1, a_2, \dots, a_n được gọi là chính quy nếu tồn tại số thực \displaystyle x thỏa mãn \displaystyle \left\lfloor kx \right\rfloor = a_k với mọi \displaystyle k=1, 2,\cdots, n. Cho dãy chính quy \displaystyle a_1, a_2, \dots, a_n, với \displaystyle 1 \le k \le n ta nói \displaystyle a_k là số hạng bắt buộc nếu dãy \displaystyle a_1, a_2, \dots, a_{k-1}, b chính quy khi và chỉ khi \displaystyle b = a_k. Tìm số lớn nhất các số hạng bắt buộc của một dãy chính quy dài \displaystyle 1000.
Bài 4. Cho \displaystyle \nu là một số vô tỷ dương, và \displaystyle m là một số nguyên dương. Một cặp \displaystyle (a,b) các số nguyên dương được gọi là tốt nếu
\displaystyle a \left \lceil b\nu \right \rceil - b \left \lfloor a \nu \right \rfloor = m. Một cặp tốt \displaystyle (a,b) được gọi là rất tốt nếu không cặp nào trong hai cặp \displaystyle (a-b,b), \displaystyle (a,b-a) là tốt. Chứng minh rằng số cặp rất tốt bằng tổng các ước dương của \displaystyle m.
Bài 5. Cho \displaystyle m,n là các số nguyên dương thỏa mãn \displaystyle m \ge n. Gọi \displaystyle S là tập tất cả các cặp \displaystyle (a,b) các số nguyên dương nguyên tố cùng nhau thỏa mãn \displaystyle a,b \le m\displaystyle a+b > m. Với mỗi \displaystyle (a,b)\in S, xét nghiệm tự nhiên \displaystyle (u,v) của phương trình \displaystyle au - bv = n sao cho \displaystyle v nhỏ nhất, và gọi \displaystyle I(a,b) là khoảng \displaystyle (v/a, u/b). Chứng minh rằng \displaystyle I(a,b) \subset (0,1) với mọi \displaystyle (a,b)\in S và mỗi số vô tỷ \displaystyle \alpha\in(0,1) thuộc \displaystyle I(a,b) với đúng \displaystyle n cặp phân biệt \displaystyle (a,b)\in S.
Bài 6. Một số nguyên dương \displaystyle q được gọi là mẫu phù hợp của số thực \displaystyle \alpha nếu \displaystyle \displaystyle |\alpha - \dfrac{p}{q}|<\dfrac{1}{10q} với số nguyên \displaystyle p nào đó. Chứng minh nếu hai số vô tỷ \displaystyle \alpha\displaystyle \beta có cùng tập các mẫu phù hợp thì \displaystyle \alpha+\beta hoặc \displaystyle \alpha- \beta là một số nguyên. Continue reading “IMO 2017 training (2)”

IMO 2016 Shortlist (*.pdf, full)


Tôi gửi tặng mọi người 2 file pdf: Một file là bản tiếng Việt ISL 2016 do tôi dịch, file còn lại là bản tiếng Anh chính thức.

Nếu có chỗ nào sai, hãy báo cho tôi.

Continue reading “IMO 2016 Shortlist (*.pdf, full)”

IMO 2017 training (1)


Chào các bạn đồng nghiệp,

đây là một số bài toán tôi dùng để luyện cho đội IMO 2017. Tuyển tập này gồm nhiều phần, đây là phần thứ nhất.

Bài 1. Cho n-giác đều P. Chứng minh rằng nếu 3 trong các đỉnh của P là điểm nguyên và hai trong chúng là kề nhau thì P là hình vuông.
Bài 2. (Vietnam TST 2011) Có một con cào cào đậu ở điểm (1,1) trên mặt phẳng tọa độ Oxy. Từ điểm đó nó sẽ nhảy đến điểm nguyên khác theo quy tắc: nhảy được từ A đến B khi và chỉ khi diện tích của tam giác AOB bằng 1/2.
(a) Tìm tất cả các điểm nguyên dương (m,n) sao cho con cào cào có thể đến đó sau hữu hạn lần nhảy, bắt đầu từ (1,1).
(b) Nếu (m,n) thỏa mãn điều kiện trên. Chứng minh rằng con cào cào có thể đến (m,n) từ (1,1) sau nhiều nhất |m-n| lần nhảy.
Bài 3. Cho số nguyên n \ge 5. Xét các số nguyên a_i,b_i (i = 1,2, \cdots ,n) thỏa mãn đồng thời hai điều kiện:
(a) Các cặp (a_i,b_i) với i = 1,2,\cdots,n đôi một khác nhau;
(b) |a_1b_2-a_2b_1| = |a_2b_3-a_3b_2| = \cdots = |a_nb_1-a_1b_n| = 1.
Chứng minh rằng tồn tại các chỉ số i,j sao cho 1<|i-j|<n-1|a_ib_j-a_jb_i|=1.
Bài 4. Trong mặt phẳng tọa độ, tô màu các điểm nguyên với hoành độ và tung độ chẵn bởi màu đen và các điểm nguyên còn lại bởi màu trắng. Cho P là một đa giác lồi có các đỉnh là các điểm nguyên màu đen. Chứng minh rằng mỗi điểm nguyên trắng nằm bên trong hoặc trên biên của P sẽ nằm giữa hai điểm nguyên đen nằm trong hay trên biên của P. Continue reading “IMO 2017 training (1)”

Farey sequence


Trong mục này tôi sẽ trình bày về phân số Farey và một số vấn đề liên quan.

Các phân số trong bài được xem là có mẫu dương.

1) Định nghĩa và một số tính chất

Định nghĩa 1. Cho số nguyên dương \displaystyle n. Phân số tối giản \displaystyle \dfrac{p}{q}\in [0;1] được gọi là phân số Farey bậc \displaystyle n nếu \displaystyle q\leq n. Dãy tăng tất cả các phân số Farey bậc \displaystyle n được gọi là dãy Farey bậc \displaystyle n,  ký hiệu là \displaystyle F_n.

Ví dụ 1.

\displaystyle F_1:\,\frac{0}{1};\frac{1}{1}.

\displaystyle F_2:\,\frac{0}{1};\frac{1}{2};\frac{1}{1}.

\displaystyle F_3:\,\frac{0}{1};\frac{1}{3};\frac{1}{2};\frac{2}{3};\frac{1}{1}.

\displaystyle F_4:\,\frac{0}{1};\frac{1}{4};\frac{1}{3};\frac{1}{2};\frac{2}{3};\frac{3}{4};\frac{1}{1}.

Ví dụ 2. Với mỗi số nguyên dương \displaystyle n, dãy \displaystyle F_n có đúng \displaystyle 1+\sum_{k=1}^n\varphi (k) số hạng.

Định lý 1. Cho các số tự nhiên \displaystyle a,b,c\displaystyle d thỏa mãn \displaystyle 0\leq \frac{a}{b}<\frac{c}{d}\leq 1\displaystyle bc-ad=1. Khi đó \displaystyle \frac{a}{b},\frac{c}{d} là hai số hạng liên tiếp của dãy \displaystyle F_n, ở đây \displaystyle n là số nguyên dương thỏa mãn \displaystyle \max\{b,d\}\leq n\leq b+d-1.

Chứng minh. Từ \displaystyle bc-ad=1 ta có \displaystyle \frac{a}{b},\frac{c}{d} là hai phân số tối giản, mà \displaystyle \max\{b,d\}\leq n, suy ra chúng là các số hạng của dãy \displaystyle F_n. Nếu chúng không phải là hai số hạng liên tiếp của \displaystyle F_n thì tồn tại phân số Farey bậc \displaystyle n, ký hiệu \displaystyle \dfrac{h}{k} thỏa mãn \displaystyle \displaystyle \frac{a}{b}<\frac{h}{k}<\frac{c}{d}.\displaystyle ck-dh\geq 1\displaystyle bh-ak\geq 1 nên

\displaystyle b+d-1\geq n\geq k=(bc-ad)k=b(ck-dh)+d(bh-ak)\geq b+d, đây là điều không thể xảy ra. Định lý được chứng minh. \Box

Với các số tự nhiên \displaystyle a,b,c\displaystyle d thỏa mãn \displaystyle 0\leq \frac{a}{b}<\frac{c}{d}, phân số \dfrac{a+c}{b+d} được gọi là phân số trung gian của hai phân số \displaystyle \dfrac{a}{b}\displaystyle \dfrac{c}{d}. Từ chứng minh trên ta có:

Định lý 2. Cho các số tự nhiên \displaystyle a,b,c\displaystyle d thỏa mãn \displaystyle 0\leq \frac{a}{b}<\frac{c}{d}\leq 1\displaystyle bc-ad=1. Khi đó nếu \displaystyle \dfrac{h}{k} là phân số trung gian của hai phân số \displaystyle \dfrac{a}{b}, \dfrac{c}{d} thì \displaystyle \frac{a}{b}<\frac{h}{k}<\frac{c}{d}\displaystyle bh-ak=1,\quad ck-dh=1.

Định lý 3. Với mọi số nguyên dương \displaystyle n ta có

1) Dãy \displaystyle F_{n+1} có được từ dãy \displaystyle F_n bằng cách viết vào giữa hai số hạng liên tiếp của \displaystyle F_n có tổng các mẫu không vượt quá \displaystyle n+1 phân số trung gian của chúng;

2) Nếu \displaystyle \dfrac{a}{b}<\dfrac{c}{d} là hai số hạng liên tiếp của \displaystyle F_n thì \displaystyle bc-ad=1.

Chứng minh. Ta sẽ chứng minh bằng quy nạp theo \displaystyle n.

Rõ ràng khẳng định đúng với $n=1$. Giả sử khẳng định đúng với các số nguyên dương bé hơn \displaystyle n\, (n\geq 2), ta sẽ chứng minh khẳng định đúng với \displaystyle n.

Từ định lý 2 và giả thiết quy nạp ta có nếu \displaystyle \dfrac{a}{b}<\dfrac{c}{d} là hai số hạng liên tiếp của \displaystyle F_n thì \displaystyle bc-ad=1.

Sau khi viết vào giữa hai số hạng liên tiếp của \displaystyle F_n có tổng các mẫu không vượt quá \displaystyle n+1 phân số trung gian của chúng ta thu được dãy con \displaystyle F'_n của \displaystyle F_{n+1}. Nếu trong \displaystyle F_{n+1} có phân số \displaystyle \dfrac{h}{k} không thuộc \displaystyle F'_n thì tồn tại hai số hạng liên tiếp \displaystyle \dfrac{a}{b}<\dfrac{c}{d} của \displaystyle F'_n sao cho \displaystyle \dfrac{a}{b}<\dfrac{h}{k}<\dfrac{c}{d}. Vì \displaystyle \dfrac{h}{k} không thuộc \displaystyle F'_n nên nó cũng không thuộc \displaystyle F_n, suy ra \displaystyle k>n, kết hợp với \displaystyle k\leq n+1 ta có \displaystyle k=n+1.

Từ chứng minh của định lý 1 suy ra \displaystyle k=n+1\geq b+d\Rightarrow \displaystyle \dfrac{a}{b}<\dfrac{c}{d} là hai phân số liên tiếp của \displaystyle F_n, mà \displaystyle b+d\leq n+1, suy ra chúng không thể là hai số hạng liên tiếp của \displaystyle F'_n, vô lý. \displaystyle \Box

Chú ý 1. Dùng định lý Pick (bạn đọc có thể xem thêm về định lý Pick ở địa chỉ https://nttuan.org/2017/03/18/topic-872/) ta có một chứng minh khác của 2).

Trong mặt phẳng tọa độ \displaystyle Oxy, xét các điểm \displaystyle M(1;0)\displaystyle N(1;1). Mỗi số hạng \displaystyle \dfrac{h}{k} của \displaystyle F_n ta cho tương ứng với điểm nguyên có tọa độ \displaystyle (k;h). Khi quay tia \displaystyle OM ngược chiều kim đồng hồ đến tia \displaystyle ON ta “gặp” mỗi điểm nguyên không quá một lần và không gặp đồng thời hai điểm nguyên (ta quan tâm đến các điểm nguyên tương ứng với các số hạng của \displaystyle F_n). Xét hai số hạng liên tiếp \displaystyle \dfrac{a}{b}<\dfrac{c}{d} của \displaystyle F_n và hai điểm \displaystyle X(b;a),Y(d;c) lần lượt tương ứng với chúng. Theo trên ta thấy tam giác \displaystyle OXY không chứa điểm nguyên nào bên trong cũng như trên biên trừ ba đỉnh của nó, suy ra \displaystyle S_{OXY}=\dfrac{1}{2}\Rightarrow bc-ad=1. \displaystyle \Box Continue reading “Farey sequence”

Góc trong mặt phẳng tọa độ (1)


Bài 1. Cho d:2x+3y+1=0,M(1;1). Viết phương trình đường thẳng qua M và tạo với d góc 45^0.

Đáp số. 5x+y-6=0,x-5y-4=0.

Bài 2. Viết phương trình của phân giác của góc nhọn tạo bởi d_1:x-2y-5=0d_2:2x-y+2=0.

Bài 3. Viết phương trình phân giác trong và ngoài xuất phát từ đỉnh A của tam giác ABC với A(1;1),B(10;13)C(13;6).

Bài 4. \Delta ABC cân tại A với AB:x+2y-1=0,BC:3x-y+5=0. Viết phương trình đường thẳng chứa cạnh AC nếu nó đi qua M(1;-3).

Bài 5. Hình vuông ABCD có đường chéo AC:x+y-10=0. Tìm B biết CD qua M(6;2)AB qua N(5;8).

Đáp số. (8;8),(5;4).

Bài 6. Cho tam giác ABC vuông cân tại A, cạnh huyền nằm trên d:x+7y-31=0, AC đi qua N(1;5/2), AB qua M(2;-3). Tìm các đỉnh.

Bài 7. d_1:2x-y+5=0;\quad d_2:3x+6y-7=0. Lập phương trình đường thẳng qua A(2;-1) và tạo với d_1,d_2 một tam giác cân.

Đáp số. 3x+y-5=0;\quad x-3y-5=0. Continue reading “Góc trong mặt phẳng tọa độ (1)”

Khoảng cách trong mặt phẳng tọa độ (1)


Bài 1. Tam giác ABCAB:x-y+4=0,BC:3x+5y+4=0CA:7x+y-12=0. Hỏi O nằm trong hay ngoài tam giác?

Bài 2. Cho M(1;4),N(6;2). Lập phương trình đường thẳng qua M sao cho khoảng cách từ N đến nó bằng 5.

Bài 3. Cho A(1;2),B(5;-1). Viết phương trình đường thẳng qua (3;5) và cách đều A,B.

Bài 4. Cho A(1;1),B(4;-3). Tìm C thuộc d:x-2y-1=0 sao cho d(C,AB)=6.

Bài 5. Cho d_1:x+y+3=0,d_2:x-y-4=0;d_3:x-2y=0. Tìm M\in d_3 để d(M,d_1)=2d(M,d_2). Continue reading “Khoảng cách trong mặt phẳng tọa độ (1)”

Số nghiệm của phương trình ax+by=n


Bài viết giới thiệu một công thức tính số nghiệm tự nhiên của phương trình ax+by=n và áp dụng công thức đó vào giải bài toán Frobenius với một tập có hai phần tử. Ở cuối bài viết chúng tôi cũng giới thiệu một số bài toán thi chọn học sinh giỏi liên quan.

1. Công thức Popoviciu

Trong mục này chúng tôi sẽ giới thiệu một công thức tính số nghiệm tự nhiên của phương trình ax+by=n, ở đây a,b là các số nguyên dương thỏa mãn \gcd (a,b)=1n là số tự nhiên.

Định lí 1. (Công thức Popoviciu)  Gọi N(a,b;n) là số các cặp số tự nhiên (x,y) sao cho ax+by=n, ở đây a,b là các số nguyên dương thỏa mãn \gcd (a,b)=1n là số tự nhiên. Khi đó

\displaystyle N(a,b;n)=\frac{n}{ab}-\left\{\frac{a^{-1}n}{b}\right\}-\left\{\frac{b^{-1}n}{a}\right\}+1, với a^{-1} là nghịch đảo modulo b của ab^{-1} là nghịch đảo modulo a của b.

Chứng minh. Gọi \displaystyle F(z)=\sum_{n=0}^{+\infty}N(a,b;n)z^n là hàm sinh của dãy số \{N(a,b;n)\}_{n\geq 0}. Ta có

\displaystyle F(z)=\sum_{k\in\mathbb{N}}\sum_{l\in\mathbb{N}}z^{ak}z^{bl}=\frac{1}{(1-z^a)(1-z^b)}.\quad (1)

\gcd (a,b)=1 nên đa thức (1-z^a)(1-z^b) có nghiệm là 1 với bội 2 và các nghiệm đơn \xi_a^k (k=1,2,\ldots,a-1), \xi_b^l (l=1,2,\ldots,b-1), ở đây \xi_a=\cos\dfrac{2\pi}{a}+i\sin \dfrac{2\pi}{a}\xi_b=\cos\dfrac{2\pi}{b}+i\sin \dfrac{2\pi}{b}. Kết hợp với (1) ta có tồn tại các số phức C_1,C_2; A_i; B_i sao cho

\displaystyle F(z)=\frac{C_1}{1-z}+\frac{C_2}{(1-z)^2}+\sum_{k=1}^{a-1}\frac{A_k}{1-\xi_a^{-k}z}+\sum_{l=1}^{b-1}\frac{B_l}{1-\xi_b^{-l}z}.\quad (2)

Để ý đến hệ số của z^n, từ (2) ta có

\displaystyle N(a,b;n)=C_1+C_2(n+1)+\sum_{k=1}^{a-1}A_k\xi_a^{-nk}+\sum_{l=1}^{b-1}B_l\xi_b^{-nl}.\quad (3)

Bây giờ ta sẽ đi tìm các số phức C_1,C_2; A_i; B_i từ đẳng thức

\displaystyle \frac{1}{(1-z^a)(1-z^b)}=\frac{C_1}{1-z}+\frac{C_2}{(1-z)^2}+\sum_{k=1}^{a-1}\frac{A_k}{1-\xi_a^{-k}z}+\sum_{l=1}^{b-1}\frac{B_l}{1-\xi_b^{-l}z}.\quad (4)

Nhân hai vế của (4) với (1-z)^2 và cho z\to 1 ta có C_2=\dfrac{1}{ab}, sau đó nhân hai vế của (4) với 1-z, để C_1 một bên và cho z\to 1 ta được C_1=\dfrac{a+b-2}{2ab}. Theo cùng một cách ta có

\displaystyle A_k=\frac{1}{a(1-\xi_a^{kb})},\quad B_l=\frac{1}{b(1-\xi_b^{la})}.

Thay vào (3) ta được

\displaystyle N(a,b;n)=\frac{n}{ab}+\frac{a+b}{2ab}+\frac{1}{a}\sum_{k=1}^{a-1}\frac{\xi_a^{-nk}}{1-\xi_a^{bk}}+\frac{1}{b}\sum_{l=1}^{b-1}\frac{\xi_b^{-nl}}{1-\xi_b^{al}}.\quad (5)

Từ (5) ta có \displaystyle N(a,1;n)=\frac{n}{a}+\frac{a+1}{2a}+\frac{1}{a}\sum_{k=1}^{a-1}\frac{\xi_a^{-nk}}{1-\xi_a^{k}}, mà \displaystyle N(a,1;n)=\left[\frac{n}{a}\right]+1, suy ra

\displaystyle \frac{1}{a}\sum_{k=1}^{a-1}\frac{\xi_a^{-nk}}{1-\xi_a^{k}}=\frac{1}{2}-\left\{\frac{n}{a}\right\}-\frac{1}{2a},

do đó \displaystyle \frac{1}{a}\sum_{k=1}^{a-1}\frac{\xi_a^{-nk}}{1-\xi_a^{bk}}=\frac{1}{a}\sum_{k=1}^{a-1}\frac{\xi_a^{-nb^{-1}k}}{1-\xi_a^{k}}=\frac{1}{2}-\left\{\frac{nb^{-1}}{a}\right\}-\frac{1}{2a},

chứng minh tương tự ta được

\displaystyle \frac{1}{b}\sum_{l=1}^{b-1}\frac{\xi_b^{-nl}}{1-\xi_b^{al}}=\frac{1}{2}-\left\{\frac{na^{-1}}{b}\right\}-\frac{1}{2b},

thay hai đẳng thức cuối cùng vào (5) ta có điều cần chứng minh. \Box

2. Áp dụng vào bài toán Frobenius

Giả sử ở ngân hàng chỉ còn hai loại tiền 3 đồng và 5 đồng. Tôi có một tờ n\, (n\in\mathbb{N}^*) đồng. Liệu tôi có thể đem tờ n đồng đó đến ngân hàng để đổi lấy các tờ 3 hay 5 đồng được không? Rõ ràng không phải lúc nào cũng đổi được (chẳng hạn n=4) và với n đủ lớn ta luôn đổi được. Một câu hỏi tự nhiên là: n lớn nhất bằng bao nhiêu để không đổi được? (Câu hỏi này lần đầu tiên được đặt ra bởi Frobenius). Continue reading “Số nghiệm của phương trình ax+by=n”

Một số kết quả trong Hình học phẳng


Tài liệu có một số kết quả hay dùng trong Hình học giải tích phẳng.

Continue reading “Một số kết quả trong Hình học phẳng”

Điểm và đường thẳng trong Oxy (1)


Bài 1. Cho A(-1;1)B(2;3).

a) Chứng minh rằng O,A,B không thẳng hàng. Viết phương trình các cạnh của \Delta AOB;

b) Viết phương trình đường cao qua A, phân giác trong qua A của \Delta AOB;

c) Tìm tọa độ trực tâm, tâm đường tròn ngoại tiếp, nội tiếp của \Delta AOB;

d) Tìm tọa độ A' đối xứng với A qua BO;

e) Viết phương trình đường thẳng qua A và song song với BO;

f) Viết phương trình đường thẳng qua A tạo với BO góc $60^{\circ}$.

Bài 2. Cho tam giác ABCM(2;1)  là trung điểm cạnh AC, điểm H(0;-3) là chân đường cao kẻ từ A, điểm E(23;-2) thuộc đường thẳng chứa trung tuyến kẻ từ C. Tìm tọa độ điểm B biết điểm A thuộc đường thẳng d:2x+3y-5=0  và điểm C có hoành độ dương.

Bài 3.  Cho tam giác ABC có đỉnh A(3;3) tâm đường tròn ngoại tiếp I(2;1) phương trình đường phân giác trong góc \widehat{BAC}x-y=0. Tìm tọa độ các đỉnh B, C biết rằng BC=8/\sqrt{5} và góc \widehat{BAC} nhọn.

Bài 4.  Cho tam giác ABC có phương trình đường thẳng chứa đường cao kẻ từ Bx+3y-18=0, phương trình đường thẳng trung trực của đoạn thẳng BC3x+19y-279=0, đỉnh C thuộc đường thẳng d:2x-y+5=0. Tìm tọa độ đỉnh A biết rằng \widehat{BAC}=135^{\circ}.

Bài 5. Cho hình vuông ABCD. Gọi M là trung điểm của BC, N nằm trên cạnh CD sao cho CN=2ND. Biết M=(11/2;1/2) và $AN$ có phương trình 2x-y-3=0. Tìm A.

Bài 6.  Cho tam giác ABC có đường cao AH:3x+4y+10=0, phân giác trong BE:x-y+1=0. Điểm M(0;2)\in AB và cách C một khoảng \sqrt{2}. Tính S_{ABC}.

Bài 7.  Cho hình chữ nhật ABCDS=12, tâm I(9/2;3/2), trung điểm của BCM(3;0)x_B>x_C. Xác định tọa độ các đỉnh của nó.

Bài 8.  \Delta ABC có tâm đường tròn ngoại tiếp I(4;-1), đường cao và trung tuyến qua A có phương trình lần lượt là d_1:x+y-1=0,d_2:x+2y-1=0. Viết phương trình các đường thẳng chứa các cạnh của nó.

Bài 9.  Cho hình chữ nhật ABCD trong mặt phẳng tọa độ Oxy. Cạnh AB có phương trình là x-y+3=0. I(0;1) là giao điểm của ACBD. Tìm tọa độ các đỉnh A, B, C, D nếu AB=3AD và điểm A có hoành độ lớn hơn hoành độ của điểm B.

Bài 10.  Cho hình vuông MNPQ. Biết MN,NP,PQ,QM lần lượt đi qua các điểm A(10;3),B(7;-2),C(-3;4),D(4;-7). Lập phương trình MN. Continue reading “Điểm và đường thẳng trong Oxy (1)”