Problems From the Book


Tôi giới thiệu với các bạn chuẩn bị tham dự kì thi chọn đội tuyển Toán Việt Nam tham dự IMO (Vietnam TST) hai cuốn sách sau đây:

1) “Problems From the Book” của Titu Andreescu và Gabriel Dospinescu.

Đây là đoạn mô tả trên trang của nhà xuất bản XYZ: “The authors provide a combination of enthusiasm and experience which will delight any reader. In this volume they present innumerable beautiful results, intriguing problems, and ingenious solutions. The problems range from elementary gems to deep truths. A trully delightful and highly instructive book, this will prepare the engaged reader not only for any mathematics competition they may enter but also for a life time of mathematical enjoyment. A must for the bookshelves of both aspiring and seasoned mathematicians.”

Bạn mua từ nhà xuất bản hoặc tìm E-book.

2) “Straight from the Book” của Titu Andreescu và Gabriel Dospinescu.

Cuốn 1) có rất nhiều bài tập về nhà, và nhiều bài rất khó. Cuốn 2) sẽ có lời giải của hầu hết các bài tập về nhà trong 1). Đây là đoạn mô tả trên trang của nhà xuất bản XYZ: “This book is a compilation of many suggestions, much advice, and even more hard work. Its main objective is to provide solutions to the problems which were originally proposed in the first 12 chapters of “Problems from the Book”. The volume is far more than a collection of solutions. The solutions are used as motivation for the introduction of some very clear expositions of mathematics. And this is modern, current, up-to-the-minute mathematics. This is absolutely state-of-the-art material. Everyone who loves mathematics and mathematical thinking should acquire this book.”

Editorial Reviews

(Đoạn này được lấy từ amazon. )

This is an exceptionally well-written book. The material is arranged in small chapters, with brief theory in the beginning of each chapter followed by a set of exceptionally difficult problems with solutions. These solutions are elegant, innovative and beautiful. You learn a lot from the solutions. In every page, you will discover one or more clever steps/tricks that will make you wonder “How come I could not think of that?”. If you are preparing for Mathematics Olympiads, working through this book will boost your confidence 100 fold. If you are a math enthusiast, you will enjoy the material – most of it is “Mathematical poetry”. Grab it before it gets sold out! –Dr S Muralidharan

Problems from the Book is rife with elegant mathematical pursuits that are well worth the effort of exploring and solving. For high schoolers up through University students, the book’s problems will illustrate important concepts and provide hours of fun at every sitting. –David Cordeiro

This book is a treasure of the mathematical gems: many many very nice problems and results, historic notes and useful comments. Readers will also find many very interesting original problems from the authors of the book and from others. If you want to develop your mathematical skills in problem solving and your knowledge in diverse mathematical branches, you will definitely find many instructive topics throughout this book. Many thanks to Prof. Andreescu and his colleagues for their invaluable books and problems. I do highly recommend this book and all other books by Prof. Andreescu to all mathematics lovers: from the pupils preparing to participate in mathematical contests to people searching excitement in mathematics. The book contains the following 23 chapters, in addition to preface, bibliography and index: 1. Some Useful Substitutions 2. Always Cauchy-Schwarz … 3. Look at the Exponent 4. Primes and Squares 5. T2’s Lemma 6. Some Classical Problems in Extremal Graph theory 7. Complex Combinatorics 8. Formal Series Revisited 9. A Brief Introduction to Algebraic Number Theory 10. Arithmetic Properties of Polynomials 11. Lagrange Interpolation Formula 12. Higher Algebra in Combinatorics 13. Geometry and Numbers 14. The Smaller, The Better 15. Density and Regular Distribution 16. The Digit Sum of Positive Integer 17. At the Border of Analysis and Number Theory 18. Quadratic Reciprocity 19. Solving Elementary Inequalities Using Integrals 20. Pigeonhole Principle Revisited 21. Some Useful Irreducibility Criteria 22. Cycles, Paths and Other Ways 23. Some Special Applications of Polynomials –H. A. Shah Ali.

Bạn mua từ nhà xuất bản hoặc tìm E-book. Continue reading “Problems From the Book”

VMO training 2017 – Part 4


Link part 3: https://nttuan.org/2016/12/02/topic-842/


Nội dung: Số học của các hệ số nhị thức, nghịch đảo modulo và giá p-adic của các số hữu tỷ.

Bài 1. Cho p là số nguyên tố lẻ và q=\dfrac{3p-5}{2}. Đặt

\displaystyle S_q=\frac{1}{2\times 3\times 4}+\frac{1}{5\times 6\times 7}+\cdots+\frac{1}{q(q+1)(q+2)}. Giả sử m,n là các số nguyên nguyên tố cùng nhau sao cho \displaystyle \frac{1}{p}-2S_q=\frac{m}{n}. Chứng minh rằng p chia hết m-n.

Bài 2. Với mỗi số nguyên tố p>3 ta định nghĩa \displaystyle T_p=\sum_{k=1}^{p-1}\frac{1}{k}. Chứng minh rằng khi viết T_p dưới dạng phân số tối giản thì tử số của nó chia hết cho p^2.

Bài 3. Cho số nguyên tố lẻ p. Với mỗi số nguyên a, định nghĩa \displaystyle S_a = \sum^{p-1}_{j=1} \frac{a^j}{j}. Giả sử m,n \in \mathbb{Z} thỏa mãn S_3 + S_4 - 3S_2 = \dfrac{m}{n}. Chứng minh rằng p chia hết m.

Bài 4. Cho số nguyên tố p\ge 5. Chứng minh rằng \displaystyle\sum_{k=0}^{(p-1)/2}\binom{p}{k}3^k-2^p+1 chia hết cho p^2. Continue reading “VMO training 2017 – Part 4”

Một số trang về Olympic Toán


Tôi có post một số trang về Olympic Toán trên facebook  nhưng nó cứ chìm xuống khi đăng một bài khác, vì thế nên tôi lập topic này để lưu các link đó lại.

P. S. Hãy góp link bằng cách comment các bạn nhé! 🙂

Continue reading “Một số trang về Olympic Toán”

IMO 2015 Shortlist (*.pdf, full)


Tôi gửi tặng mọi người 2 file pdf: Một file là bản tiếng Việt ISL 2015 do tôi dịch, file còn lại là bản tiếng Anh chính thức.

Continue reading “IMO 2015 Shortlist (*.pdf, full)”

Lagrange’s interpolation polynomial


In this article, I will use Lagrange polynomial to solve some polynomial problems from Mathematical Olympiads.

Continue reading “Lagrange’s interpolation polynomial”

Kỳ thi Olympic Toán Sinh viên và Học sinh 2016


Hội Toán học Việt Nam phối hợp với Trường Đại học Quy Nhơn tổ chức kỳ thi Olympic Toán học dành cho Sinh viên và Học sinh Trung học Phổ thông chuyên nhằm góp phần nâng cao chất lượng dạy và học toán, thúc đẩy niềm say mê toán học trong học sinh, phát hiện, bồi dưỡng học sinh giỏi toán. Kỳ thi cũng là một cơ hội giao lưu cho các học sinh giỏi toán với các sinh viên yêu toán và các giảng viên toán tại các trường đại học, cao đẳng và học viện. Continue reading “Kỳ thi Olympic Toán Sinh viên và Học sinh 2016”

Principles and Techniques in Combinatorics


By (author): Chen Chuan-Chong (NUS, Singapore), Koh Khee-Meng (NUS, Singapore)

A textbook suitable for undergraduate courses. The materials are presented very explicitly so that students will find it very easy to read. A wide range of examples, about 500 combinatorial problems taken from various mathematical competitions and exercises are also included.

Contents:

  • Permutations and Combinations
  • Binomial Coefficients and Multinomial Coefficients
  • The Pigeonhole Principle and Ramsey Numbers
  • The Principle of Inclusion and Exclusion
  • Generating Functions
  • Recurrence Relations

Readership: Undergraduates, graduates and mathematicians.

Download

Các tính chất đại số của hệ số nhị thức


Bài 5.1. Cho n là một số nguyên dương. Tìm số hạng lớn nhất của dãy \{C_n^k\}_{k=0}^n.

Bài 5.2. Chứng minh rằng nếu n,k là các số nguyên dương sao cho n>1 thì

a)kC_n^k=nC_{n-1}^{k-1};

b)kC_n^k=(n-k+1)C_n^{k-1}.

Bài 5.3. Chứng minh rằng nếu n,k là các số nguyên dương thì

a)C_n^0+C_{n+1}^1+C_{n+2}^2+\cdots+C_{n+k}^k=C_{n+k+1}^k;

b)C_n^n+C_{n+1}^n+C_{n+2}^n+\cdots+C_{n+k}^n=C_{n+k+1}^{n+1}.

Bài 5.4. Chứng minh rằng nếu n là một số nguyên dương thì

a)C_n^0+C_n^1+\cdots + C_n^n=2^n;

b)C_n^0-C_n^1+\cdots+(-1)^nC_n^n=0;

Continue reading “Các tính chất đại số của hệ số nhị thức”

Tổ hợp


Định nghĩa. Cho một tập An phần tử(n\in\mathbb{N}) và 0\leq k\leq n là một số nguyên. Một k-tổ hợp(một tổ hợp chập k) của A là một tập con k phần tử của A.

Ví dụ 4.1. Các 3-tổ hợp của A=\{a,b,c,d\}\{a,b,c\},\{b,c,d\},\{c,d,a\},\{d,a,b\}\Box.

Số tổ hợp. Cho một tập An phần tử(n\in\mathbb{N}) và 0\leq k\leq n là một số nguyên. Khi đó số k-tổ hợp của A bằng C_n^k=\dfrac{A_n^k}{k!}=\dfrac{n!}{k!(n-k)!}.

Chứng minh. Sự khác nhau giữa một k-tổ hợp và một k-hoán vị chính là một đằng không quan tâm đến thứ tự, trong khi đằng kia có quan tâm đến thứ tự. Tận dụng điều này ta có chứng minh như sau.

Continue reading “Tổ hợp”