Một số sách về Olympic Toán


Chào các em học sinh đang chuẩn bị cho các kỳ thi Olympic Toán, trong tài liệu này tôi sẽ giới thiệu một số sách các em nên có. Trước tiên các em cần có bộ sách “Tài liệu giáo khoa Chuyên Toán” lớp 10,11,12. Dưới đây là vài cuốn khác.

ĐẠI SỐ VÀ GIẢI TÍCH

A1. Nguyễn Văn Mậu, Phương trình hàm.
A2. Jean-Marie Monier, Giải tích 1.
A3. Phạm Kim Hùng, Secrets In Inequalities (Vol 1 and Vol 2).
A4. Nguyễn Hữu Điển, Đa thức.
A5. Titu Andreescu, Navid Safaei, and Alessandro Ventullo, 117 Polynomial Problems.
A6. T. Andreescu, V. Cartoaje, G. Dospinescu, and M. Lascu, Old and New Inequalities.
A7. E.J. Barbeau, Polynomials.
A8. T. Andreescu and D. Andrica, Complex Numbers from A to Z.
A9. Titu Andreescu, Iurie Boreico, Oleg Mushkarov, and Nikolai Nikolov, Topics in Functional Equations.
A10. B. J. Venkatachala, Functional Equations.

TỔ HỢP

C1. C. Chuan-Chong and K. Khee-Meng, Principles and Techiques in Combinatorics.
C2. T. Andreescu and Z. Feng, 102 Combinatorial Problems.
C3. Vũ Đình Hòa, Hình học tổ hợp.
C4. Vũ Đình Hòa, Graph.
C5. T. Andreescu and Z. Feng, A Path to Combinatorics for Undergraduates.
C6. H.S. Wilf, Generatingfunctionology.
C7. Pranav A. Sriram, Olympiad combinatorics.
C8. R. Brualdi, Introductory Combinatorics.

HÌNH HỌC

G1. Nguyễn Minh Hà và Nguyễn Xuân Bình, Bài tập nâng cao và một số chuyên đề Hình học 10.
G2. Titu Andreescu, Sam Korsky, and Cosmin Pohoata, Lemmas in Olympiad Geometry.
G3. I.M. Yaglom, Geometric Transformations.
G4. T. Andreescu, O. Mushkarov, and L. Stoyanov, Geometric Problems on Maxima and Minima.
G5. Roger A. Johnson, Advanced Euclidean Geometry.

SỐ HỌC

N1. Đặng Hùng Thắng, Nguyễn Văn Ngọc, và Vũ Kim Thủy, Bài giảng số học.
N2. D. Burton, Elementary Number Theory.
N3. Titu Andreescu, Dorin Andrica, and Ion Cucurezeanu, An Introduction to Diophantine Equations.
N4. T. Andreescu, D. Andrica, and Z. Feng, 104 Number Theory Problems.
N5. G.H. Hardy, E.M. Wright, An Introduction to the Theory of Numbers.

ĐỀ THI VÀ PHƯƠNG PHÁP GIẢI TOÁN

M1. Lê Anh Vinh (chủ biên), Định hướng bồi dưỡng học sinh năng khiếu Toán.
M2. Dusan Djukic, Vladimir Jankovic, Ivan Matic, and Nikola Petrovic, The IMO Compendium. Continue reading “Một số sách về Olympic Toán”

Đề thi chọn đội tuyển Trung Quốc tham dự IMO 2017 (China TST 2017) – Phần 5


Các bạn có thể xem phần 4 tại https://nttuan.org/2018/03/07/chinatst2017-test4/

Ngày thứ nhất
Bài 1. Cho số nguyên \displaystyle n\ge 3. Xét dãy \displaystyle a_1,a_2,...,a_n, nếu \displaystyle (a_i,a_j,a_k) thỏa mãn \displaystyle i+k=2j\, (i<j<k)\displaystyle a_i+a_k\ne 2a_j ta nói nó là tốt. Nếu một dãy chứa ít nhất một bộ ba tốt thì nó chứa ít nhất bao nhiêu bộ ba tốt?
Bài 2. Tìm số nguyên dương \displaystyle m nhỏ nhất có tính chất: với mỗi đa thức \displaystyle f(x) với hệ số thực, tồn tại đa thức \displaystyle g(x) với hệ số thực có bậc không lớn hơn $m$ sao cho tồn tại \displaystyle 2017 số khác nhau \displaystyle a_1,a_2,...,a_{2017} thỏa mãn \displaystyle g(a_i)=f(a_{i+1}) với mọi \displaystyle i=1,2,...,2017. Ở đây chỉ số lấy theo modulo \displaystyle 2017.
Bài 3. Với một điểm hữu tỷ \displaystyle (x,y), nếu \displaystyle xy là số nguyên chia hết cho \displaystyle 2 nhưng không chia hết cho \displaystyle 3 ta tô nó màu đỏ, nếu \displaystyle xy là số nguyên chia hết cho \displaystyle 3 nhưng không chia hết cho \displaystyle 2 ta tô nó màu xanh. Tồn tại hay không một đoạn thẳng chứa đúng \displaystyle 2017 điểm xanh và đúng \displaystyle 58 điểm đỏ? Continue reading “Đề thi chọn đội tuyển Trung Quốc tham dự IMO 2017 (China TST 2017) – Phần 5”

Đề thi chọn đội tuyển Trung Quốc tham dự IMO 2017 (China TST 2017) – Phần 4


Các bạn có thể xem phần 3 tại https://nttuan.org/2017/04/14/topic-880/

Ngày thứ nhất
Bài 1. Chứng minh rằng \displaystyle\sum_{k=0}^{58}C_{2017+k}^{58-k}C_{2075-k}^{k}=\sum_{p=0}^{29}C_{4091-2p}^{58-2p}.
Bài 2. Cho tam giác \displaystyle ABC, đường tròn bàng tiếp góc \displaystyle A tiếp xúc với cạnh \displaystyle BC, đường thẳng \displaystyle AB\displaystyle AC lần lượt tại \displaystyle E,D,F. \displaystyle EZ là đường kính của đường tròn. \displaystyle B_1\displaystyle C_1 thuộc \displaystyle DF sao cho \displaystyle BB_1\perp{BC}, \displaystyle CC_1\perp{BC}. Đường thẳng \displaystyle ZB_1,ZC_1 cắt \displaystyle BC tại \displaystyle X,Y tương ứng. \displaystyle EZ cắt \displaystyle DF tại \displaystyle H, \displaystyle ZK vuông góc với \displaystyle FD tại \displaystyle K. Chứng minh rằng nếu \displaystyle H là trực tâm của tam giác \displaystyle XYZ thì \displaystyle H,K,X,Y cùng nằm trên một đường tròn.
Bài 3. Tìm số các bộ \displaystyle (x_1,...,x_{100}) thỏa mãn đồng thời ba điều kiện
i) \displaystyle x_1,...,x_{100}\in\{1,2,..,2017\};
ii) \displaystyle 2017|x_1+...+x_{100};
iii) \displaystyle 2017|x_1^2+...+x_{100}^2. Continue reading “Đề thi chọn đội tuyển Trung Quốc tham dự IMO 2017 (China TST 2017) – Phần 4”

IMO 2016 Shortlist (*.pdf, full)


Tôi gửi tặng mọi người 2 file pdf: Một file là bản tiếng Việt ISL 2016 do tôi dịch, file còn lại là bản tiếng Anh chính thức.

Nếu có chỗ nào sai, hãy báo cho tôi.

Continue reading “IMO 2016 Shortlist (*.pdf, full)”

IMO 2016 Shortlist – Algebra


A1. Cho \displaystyle a,b,c là các số thực dương thỏa mãn \displaystyle \min\{ab,bc,ca\}\geq 1. Chứng minh rằng
\displaystyle \sqrt[3]{(a^2+1)(b^2+1)(c^2+1)}\leq \left(\frac{a+b+c}{3}\right)^2+1.
A2. Tìm hằng số thực \displaystyle C nhỏ nhất sao cho: Với mỗi \displaystyle 5 số thực dương (không cần phân biệt) \displaystyle a_1, \displaystyle a_2, \displaystyle a_3, \displaystyle a_4\displaystyle a_5, tồn tại các chỉ số \displaystyle i, \displaystyle j, \displaystyle k\displaystyle l đôi một khác nhau để \displaystyle \left|\frac{a_i}{a_j}-\frac{a_k}{a_l}\right|\leq C.
A3. Tìm tất cả các số nguyên \displaystyle n>2 có tính chất: với mỗi \displaystyle 2n số thực \displaystyle a_1, \displaystyle a_2,\cdots, \displaystyle a_n; \displaystyle b_1, \displaystyle b_2,\cdots, \displaystyle b_n thỏa mãn \displaystyle |a_k|+|b_k|=1\,\forall k=1,2,\cdots,n, tồn tại \displaystyle n số \displaystyle x_1,x_2,\cdots,x_n\in\{-1;1\} sao cho \displaystyle \left|\sum_{k=1}^nx_ka_k\right|+\left|\sum_{k=1}^nx_kb_k\right|\leq 1.
A4. Tìm tất cả các hàm số \displaystyle f:(0;+\infty)\to (0;+\infty) sao cho
\displaystyle xf(x^2)f(f(y))+f(yf(x))=f(xy)(f(f(x^2))+f(f(y^2))),\quad \forall x,y\in (0;+\infty).
A5.
(a) Chứng minh rằng với mỗi số nguyên dương \displaystyle n, tồn tại phân số \displaystyle a/b thỏa mãn \displaystyle 0<b\leq 1+\sqrt{n}\displaystyle \sqrt{n}\leq\dfrac{a}{b}\leq\sqrt{n+1}.
(b) Chứng minh rằng có vô hạn số nguyên dương \displaystyle n sao cho không tồn tại phân số \displaystyle a/b thỏa mãn \displaystyle 0<b\leq\sqrt{n}\displaystyle \sqrt{n}\leq\dfrac{a}{b}\leq\sqrt{n+1}. Continue reading “IMO 2016 Shortlist – Algebra”

Tính bất khả quy của các đa thức chia đường tròn


Các đa thức chia đường tròn là bất khả quy trên \mathbb{Q}. Bài viết sau của Steven H. Weintraub giới thiệu một số chứng minh cổ điển của kết quả này.

Các kết quả khác về các đa thức này có ở link https://nttuan.org/2017/02/09/topic-861/

Continue reading “Tính bất khả quy của các đa thức chia đường tròn”

Đa thức chia đường tròn và dạng yếu của định lí Dirichlet


Trong bài này, qua các bài toán tôi sẽ giới thiệu các tính chất của các đa thức chia đường tròn, từ các tính chất đó tôi giới thiệu dạng yếu của định lí Dirichlet. Phần cuối của bài viết là một số bài toán thi chọn học sinh giỏi liên quan. Bạn đọc có thể xem thêm về định lí Dirichlet tại https://nttuan.org/2016/02/11/topic-746/.

Định nghĩa. Cho số nguyên dương n. Đa thức chia đường tròn thứ n, ký hiệu \Phi_n, là đa thức monic có các nghiệm là các căn nguyên thủy bậc n của đơn vị, nghĩa là \displaystyle \Phi_n(x)=\prod_{\omega_n\in U_n}(x-\omega_n), ở đây U_n là tập tất cả các căn nguyên thủy bậc n của đơn vị.

|U_n|=\varphi (n)\,\,\forall n\geq 1 nên \deg\Phi_n=\varphi (n)\,\,\forall n\geq 1.

Ví dụ. 10 đa thức chia đường tròn đầu tiên là

\Phi_1(x)=x-1,\,\, \Phi_2(x)=x+1,\,\, \Phi_3(x)=x^2+x+1,\,\, \Phi_4(x)=x^2+1,

\Phi_5(x)=x^4+x^3+x^2+x+1,\,\, \Phi_6(x)=x^2-x+1,\,\,\Phi_7(x)=x^6+x^5+x^4+x^3+x^2+x+1,

\Phi_8(x)=x^4+1,\,\, \Phi_9(x)=x^6+x^3+1,\,\,\Phi_{10}(x)=x^4-x^3+x^2-x+1.

Bài 1. Chứng minh rằng với mỗi số nguyên dương n ta có \displaystyle x^n-1=\prod_{d|n}\Phi_d(x). Từ đó suy ra \displaystyle n=\sum_{d|n}\varphi (d).

Bài 2. Chứng minh \Phi_n(x)\in\mathbb{Z}[x]\,\,\forall n\geq 1.

Bài 3. Chứng minh rằng nếu an là các số nguyên dương nguyên tố cùng nhau thì \Phi_n(x^a)=\prod_{d|a}\Phi_{nd}(x).

Bài 4. Cho số nguyên dương n và số nguyên tố p. Chứng minh rằng

\displaystyle \Phi_{pn}(x)=\begin{cases}\Phi_n(x^p),\quad p|n\\ \frac{\Phi_n(x^p)}{\Phi_n(x)},\quad p\not|n.\end{cases}

Bài 5. Cho số nguyên dương n, d<n là một ước dương của n, và a là một số nguyên. Giả sử p là một ước nguyên tố chung của \Phi_n(a)\Phi_d(a). Chứng minh rằng p|n.

Bài 6. Cho mn là các số nguyên dương. Giả sử rằng tồn tại số nguyên a sao cho \gcd (\Phi_m(a),\Phi_n(a))>1. Chứng minh rằng \dfrac{m}{n} là lũy thừa nguyên của một số nguyên tố.

Bài 7. Cho số nguyên dương n và số nguyên a. Chứng minh rằng mỗi ước nguyên tố p của \Phi_n(a) phải thỏa mãn p|n hoặc p\equiv 1\pmod{n}.

Bài 8. (Dạng yếu của định lý Dirichlet) Cho số nguyên dương n. Chứng minh rằng có vô hạn số nguyên tố p thỏa mãn p\equiv 1\pmod{n}. Continue reading “Đa thức chia đường tròn và dạng yếu của định lí Dirichlet”

Đề thi chọn HSG Quốc gia của Iran năm 2016 – Vòng 3 (Iran MO 2016, 3rd Round)


Đại số

Bài 1. Cho dãy số thực (a_n) thỏa mãn a_1=1007a_{i+1}\geq a_i+1\,\,\forall i\in\mathbb{N}^*. Chứng minh rằng

\displaystyle \frac{1}{2016}>\sum_{i=1}^{2016}\frac{1}{a_{i+1}^{2}+a_{i+2}^2}.

Bài 2. Tìm tất cả các hàm số f:\mathbb{N}^*\rightarrow\mathbb{N}^* sao cho

\forall a,b\in\mathbb{N}^*,\quad (f(a)+b) f(a+f(b))=(a+f(b))^2.

Bài 3. Tồn tại hay không dãy vô hạn điểm (x_1,y_1),(x_2,y_2),... sao cho với mọi dãy b_1,b_2,... các số thực, tồn tại P(x,y)\in \mathbb{R}[x,y] thỏa mãn điều kiện \forall i\in\mathbb{N}^*,\quad P(x_{i},y_{i})=b_{i}.

Hình học

Bài 4. Cho tam giác ABC, P là giao điểm của đường cao qua C và tiếp tuyến tại A của đường tròn (ABC). Phân giác của góc A cắt BC tại D. PD cắt AB tại K, nếu H là trực tâm của tam giác, chứng minh HK\perp AD.

Bài 5. Cho tam giác ABC. Gọi E,E là hai điểm trên AB,AC tương ứng sao cho khoảng cách từ chúng đến trung điểm của BC bằng nhau. Gọi P là giao điểm thứ hai của (ABC)(AEF). Các tiếp tuyến tại E,F của (AEF) cắt nhau tại K. Chứng minh \angle KPA = 90^{\circ}.

Bài 6. Cho tam giác ABC với các đường cao AD,BE,CF. Hạ các đoạn vuông góc FA_{1},DB_{1},EC_{1} đến BC,AC,AB tương ứng. Chứng minh tam giác ABC đồng dạng với tam giác A_{1}B_{1}C_{1}.

Số học

Bài 7. Cho F là một tập con của tập các số nguyên dương với ít nhất hai phần tử và P(x) \in \mathbb Z[X] thỏa mãn: Với mọi a,b\in F, ta có a+b \in F\gcd(P(a),P(b))=1. Chứng minh P(x) là đa thức hằng.

Bài 8. Ta nói P(x)\in Z[x]tốt nếu có vô hạn số nguyên tố q sao cho tập \{P(n) \pmod{q} | n\in \mathbb{N}^*\} có ít nhất \dfrac{q+1}{2} phần tử. Chứng minh x^3+x là tốt.

Bài 9. Ta nói số nguyên dương ađẹp theo modulo m nếu \gcd (a,m)=1 và tồn tại số nguyên dương x sao cho x^x \equiv a \pmod m. Cho a là đẹp theo modulo n^n. Chứng minh a cũng là đẹp theo modulo n^{n^n}.

Tổ hợp

Bài 10. Tìm số các hoán vị p của \left \{ 1,2,\cdots ,n \right \} sao cho tồn tại duy nhất i \in \left \{ 1,2,\cdots ,n \right \} thỏa mãn p(p(i)) \geq i.

Bài 11. Liệu có thể chia bảng vuông cỡ 7\times 7 thành một vài phần liên thông có cùng chu vi? (Một nhóm các ô vuông con được gọi là liên thông nếu từ mỗi ô trong nhóm có thể đến các ô khác bằng cách đi qua các cạnh của các ô vuông con).

Bài 12.24 robot trên mặt phẳng, mỗi robot có góc nhìn 70^{\circ}. Có nhiều nhất bao nhiêu quan hệ quan sát? (Quan sát là quan hệ một chiều).

Continue reading “Đề thi chọn HSG Quốc gia của Iran năm 2016 – Vòng 3 (Iran MO 2016, 3rd Round)”

Một số trang về Olympic Toán


Tôi có post một số trang về Olympic Toán trên facebook  nhưng nó cứ chìm xuống khi đăng một bài khác, vì thế nên tôi lập topic này để lưu các link đó lại.

P. S. Hãy góp link bằng cách comment các bạn nhé! 🙂

Continue reading “Một số trang về Olympic Toán”

Real roots of a polynomial


Cách đây vài tháng tôi có đưa lên blog này một số bài toán về nghiệm thực của đa thức, cụ thể ở các link sau:

Dưới đây là file pdf tổng hợp các bài trên sau khi nhận được sự góp ý từ các bạn đồng nghiệp và các em học sinh.

Continue reading “Real roots of a polynomial”