IMO 2016 Shortlist – Algebra


A1. Cho \displaystyle a,b,c là các số thực dương thỏa mãn \displaystyle \min\{ab,bc,ca\}\geq 1. Chứng minh rằng
\displaystyle \sqrt[3]{(a^2+1)(b^2+1)(c^2+1)}\leq \left(\frac{a+b+c}{3}\right)^2+1.
A2. Tìm hằng số thực \displaystyle C nhỏ nhất sao cho: Với mỗi \displaystyle 5 số thực dương (không cần phân biệt) \displaystyle a_1, \displaystyle a_2, \displaystyle a_3, \displaystyle a_4\displaystyle a_5, tồn tại các chỉ số \displaystyle i, \displaystyle j, \displaystyle k\displaystyle l đôi một khác nhau để \displaystyle \left|\frac{a_i}{a_j}-\frac{a_k}{a_l}\right|\leq C.
A3. Tìm tất cả các số nguyên \displaystyle n>2 có tính chất: với mỗi \displaystyle 2n số thực \displaystyle a_1, \displaystyle a_2,\cdots, \displaystyle a_n; \displaystyle b_1, \displaystyle b_2,\cdots, \displaystyle b_n thỏa mãn \displaystyle |a_k|+|b_k|=1\,\forall k=1,2,\cdots,n, tồn tại \displaystyle n số \displaystyle x_1,x_2,\cdots,x_n\in\{-1;1\} sao cho \displaystyle \left|\sum_{k=1}^nx_ka_k\right|+\left|\sum_{k=1}^nx_kb_k\right|\leq 1.
A4. Tìm tất cả các hàm số \displaystyle f:(0;+\infty)\to (0;+\infty) sao cho
\displaystyle xf(x^2)f(f(y))+f(yf(x))=f(xy)(f(f(x^2))+f(f(y^2))),\quad \forall x,y\in (0;+\infty).
A5.
(a) Chứng minh rằng với mỗi số nguyên dương \displaystyle n, tồn tại phân số \displaystyle a/b thỏa mãn \displaystyle 0<b\leq 1+\sqrt{n}\displaystyle \sqrt{n}\leq\dfrac{a}{b}\leq\sqrt{n+1}.
(b) Chứng minh rằng có vô hạn số nguyên dương \displaystyle n sao cho không tồn tại phân số \displaystyle a/b thỏa mãn \displaystyle 0<b\leq\sqrt{n}\displaystyle \sqrt{n}\leq\dfrac{a}{b}\leq\sqrt{n+1}. Continue reading “IMO 2016 Shortlist – Algebra”

Farey sequence


Trong mục này tôi sẽ trình bày về phân số Farey và một số vấn đề liên quan.

Các phân số trong bài được xem là có mẫu dương.

1) Định nghĩa và một số tính chất

Định nghĩa 1. Cho số nguyên dương \displaystyle n. Phân số tối giản \displaystyle \dfrac{p}{q}\in [0;1] được gọi là phân số Farey bậc \displaystyle n nếu \displaystyle q\leq n. Dãy tăng tất cả các phân số Farey bậc \displaystyle n được gọi là dãy Farey bậc \displaystyle n,  ký hiệu là \displaystyle F_n.

Ví dụ 1.

\displaystyle F_1:\,\frac{0}{1};\frac{1}{1}.

\displaystyle F_2:\,\frac{0}{1};\frac{1}{2};\frac{1}{1}.

\displaystyle F_3:\,\frac{0}{1};\frac{1}{3};\frac{1}{2};\frac{2}{3};\frac{1}{1}.

\displaystyle F_4:\,\frac{0}{1};\frac{1}{4};\frac{1}{3};\frac{1}{2};\frac{2}{3};\frac{3}{4};\frac{1}{1}.

Ví dụ 2. Với mỗi số nguyên dương \displaystyle n, dãy \displaystyle F_n có đúng \displaystyle 1+\sum_{k=1}^n\varphi (k) số hạng.

Định lý 1. Cho các số tự nhiên \displaystyle a,b,c\displaystyle d thỏa mãn \displaystyle 0\leq \frac{a}{b}<\frac{c}{d}\leq 1\displaystyle bc-ad=1. Khi đó \displaystyle \frac{a}{b},\frac{c}{d} là hai số hạng liên tiếp của dãy \displaystyle F_n, ở đây \displaystyle n là số nguyên dương thỏa mãn \displaystyle \max\{b,d\}\leq n\leq b+d-1.

Chứng minh. Từ \displaystyle bc-ad=1 ta có \displaystyle \frac{a}{b},\frac{c}{d} là hai phân số tối giản, mà \displaystyle \max\{b,d\}\leq n, suy ra chúng là các số hạng của dãy \displaystyle F_n. Nếu chúng không phải là hai số hạng liên tiếp của \displaystyle F_n thì tồn tại phân số Farey bậc \displaystyle n, ký hiệu \displaystyle \dfrac{h}{k} thỏa mãn \displaystyle \displaystyle \frac{a}{b}<\frac{h}{k}<\frac{c}{d}.\displaystyle ck-dh\geq 1\displaystyle bh-ak\geq 1 nên

\displaystyle b+d-1\geq n\geq k=(bc-ad)k=b(ck-dh)+d(bh-ak)\geq b+d, đây là điều không thể xảy ra. Định lý được chứng minh. \Box

Với các số tự nhiên \displaystyle a,b,c\displaystyle d thỏa mãn \displaystyle 0\leq \frac{a}{b}<\frac{c}{d}, phân số \dfrac{a+c}{b+d} được gọi là phân số trung gian của hai phân số \displaystyle \dfrac{a}{b}\displaystyle \dfrac{c}{d}. Từ chứng minh trên ta có:

Định lý 2. Cho các số tự nhiên \displaystyle a,b,c\displaystyle d thỏa mãn \displaystyle 0\leq \frac{a}{b}<\frac{c}{d}\leq 1\displaystyle bc-ad=1. Khi đó nếu \displaystyle \dfrac{h}{k} là phân số trung gian của hai phân số \displaystyle \dfrac{a}{b}, \dfrac{c}{d} thì \displaystyle \frac{a}{b}<\frac{h}{k}<\frac{c}{d}\displaystyle bh-ak=1,\quad ck-dh=1.

Định lý 3. Với mọi số nguyên dương \displaystyle n ta có

1) Dãy \displaystyle F_{n+1} có được từ dãy \displaystyle F_n bằng cách viết vào giữa hai số hạng liên tiếp của \displaystyle F_n có tổng các mẫu không vượt quá \displaystyle n+1 phân số trung gian của chúng;

2) Nếu \displaystyle \dfrac{a}{b}<\dfrac{c}{d} là hai số hạng liên tiếp của \displaystyle F_n thì \displaystyle bc-ad=1.

Chứng minh. Ta sẽ chứng minh bằng quy nạp theo \displaystyle n.

Rõ ràng khẳng định đúng với $n=1$. Giả sử khẳng định đúng với các số nguyên dương bé hơn \displaystyle n\, (n\geq 2), ta sẽ chứng minh khẳng định đúng với \displaystyle n.

Từ định lý 2 và giả thiết quy nạp ta có nếu \displaystyle \dfrac{a}{b}<\dfrac{c}{d} là hai số hạng liên tiếp của \displaystyle F_n thì \displaystyle bc-ad=1.

Sau khi viết vào giữa hai số hạng liên tiếp của \displaystyle F_n có tổng các mẫu không vượt quá \displaystyle n+1 phân số trung gian của chúng ta thu được dãy con \displaystyle F'_n của \displaystyle F_{n+1}. Nếu trong \displaystyle F_{n+1} có phân số \displaystyle \dfrac{h}{k} không thuộc \displaystyle F'_n thì tồn tại hai số hạng liên tiếp \displaystyle \dfrac{a}{b}<\dfrac{c}{d} của \displaystyle F'_n sao cho \displaystyle \dfrac{a}{b}<\dfrac{h}{k}<\dfrac{c}{d}. Vì \displaystyle \dfrac{h}{k} không thuộc \displaystyle F'_n nên nó cũng không thuộc \displaystyle F_n, suy ra \displaystyle k>n, kết hợp với \displaystyle k\leq n+1 ta có \displaystyle k=n+1.

Từ chứng minh của định lý 1 suy ra \displaystyle k=n+1\geq b+d\Rightarrow \displaystyle \dfrac{a}{b}<\dfrac{c}{d} là hai phân số liên tiếp của \displaystyle F_n, mà \displaystyle b+d\leq n+1, suy ra chúng không thể là hai số hạng liên tiếp của \displaystyle F'_n, vô lý. \displaystyle \Box

Chú ý 1. Dùng định lý Pick (bạn đọc có thể xem thêm về định lý Pick ở địa chỉ https://nttuan.org/2017/03/18/topic-872/) ta có một chứng minh khác của 2).

Trong mặt phẳng tọa độ \displaystyle Oxy, xét các điểm \displaystyle M(1;0)\displaystyle N(1;1). Mỗi số hạng \displaystyle \dfrac{h}{k} của \displaystyle F_n ta cho tương ứng với điểm nguyên có tọa độ \displaystyle (k;h). Khi quay tia \displaystyle OM ngược chiều kim đồng hồ đến tia \displaystyle ON ta “gặp” mỗi điểm nguyên không quá một lần và không gặp đồng thời hai điểm nguyên (ta quan tâm đến các điểm nguyên tương ứng với các số hạng của \displaystyle F_n). Xét hai số hạng liên tiếp \displaystyle \dfrac{a}{b}<\dfrac{c}{d} của \displaystyle F_n và hai điểm \displaystyle X(b;a),Y(d;c) lần lượt tương ứng với chúng. Theo trên ta thấy tam giác \displaystyle OXY không chứa điểm nguyên nào bên trong cũng như trên biên trừ ba đỉnh của nó, suy ra \displaystyle S_{OXY}=\dfrac{1}{2}\Rightarrow bc-ad=1. \displaystyle \Box Continue reading “Farey sequence”

China TST 2014 – Test 3/Problem 3


Bài toán.  Chứng minh rằng không tồn tại cặp (x,y) các số nguyên dương thỏa mãn \displaystyle (x+1) (x+2)\cdots (x+2014)= (y+1) (y+2)\cdots (y+4028).

Lời giải. Tồn tại số nguyên dương i sao cho \displaystyle v_2(x+i)=\max_{1\leq j\leq 2014} v_2(x+j). Suy ra với mỗi 1\leq j\leq 2014, j\not=i ta có v_2(x+j)=v_2(x+i+(j-i))=v_2(j-i), thật vậy, không thể có v_2(j-i)>v_2(x+i), vì nếu không, v_2(j-i)>v_2(x+i)\,\forall i, do đó v_2(j-i)\geq 11 vì trong vế trái sẽ có số chia hết cho 1024, suy ra |j-i|\geq 2^{11}, vô lý. Continue reading “China TST 2014 – Test 3/Problem 3”

Mở đầu về đa thức


Trong bài này \mathbb{K} sẽ được hiểu là \mathbb{C},\mathbb{R},\mathbb{Q} hay \mathbb{Z}.

1. Hệ số và bậc

Định nghĩa 1. Một tổng hình thức a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0, ở đây n\in\mathbb{N}, a_i\in \mathbb{K}\,\forall i được gọi là một đa thức với hệ số trong \mathbb{K}.

Như vậy mỗi phần tử của \mathbb{K} là một đa thức với hệ số trong \mathbb{K}, chúng được gọi là các đa thức hằng. Số 0\in\mathbb{K} ứng với đa thức không và cũng được ký hiệu bởi 0.

Tập các đa thức với hệ số trong \mathbb{K} được ký hiệu là \mathbb{K}[x].

Định nghĩa 2. Với đa thức f(x)=a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0\,\,(a_n\not =0), ta sẽ gọi các a_i là các hệ số của f(x), a_n là hệ số cao nhất, a_0 là hệ số tự do. f(x) được gọi là monic nếu a_n=1. Số n được gọi là bậc của f(x), ký hiệu \deg f(x)=n.

Quy ước. Bậc của đa thức 0 bằng -\infty.

Định nghĩa 3. Hai đa thức f(x),g(x)\in\mathbb{K}[x] được gọi là bằng nhau, ký hiệu f(x)=g(x) hay f(x)\equiv g(x), nếu chúng cùng là đa thức 0 hoặc cả hai khác 0 đồng thời \deg f(x)=\deg g(x) và các hệ số tương ứng bằng nhau.

Ví dụ 1. Tìm bậc, hệ số hằng và hệ số cao nhất của các đa thức sau

a) 3x^4-3x^2+1;

b) 6x^2.

Ví dụ 2. Tìm

a) Một đa thức monic có bậc 12;

b) Một đa thức có bậc 5 nhưng không phải là monic;

c) Một đa thức có bậc 0.

2. Các phép toán

Định nghĩa 4. Xét hai đa thức f(x)=a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0g(x)=b_mx^m+b_{m-1}x^{m-1}+\cdots+b_0, ở đây a_i,b_j là các phần tử của \mathbb{K}a_n,b_m không cần phải khác 0 (sau này nếu không quan tâm đến bậc của đa thức thì ta cũng dùng biểu diễn này cho tiện).

Tổng của hai đa thức trên, ký hiệu f(x)+g(x), là đa thức xác định bởi

f(x)+g(x)=(a_0+b_0)+(a_1+b_1)x+(a_2+b_2)x^2+\cdots

Tích của f(x)g(x), ký hiệu f(x)g(x), là đa thức xác định bởi

f(x)g(x)=a_0b_0+(a_0b_1+a_1b_0)x+(a_0b_2+a_1b_1+a_2b_0)x^2+\cdots

Ta dễ dàng chứng minh được các kết quả sau:

Định lí 1.

1) f(x)+(g(x)+h(x))=(f(x)+g(x))+h(x)\,\,\forall f(x),g(x),h(x)\in\mathbb{K}[x].

2) f(x)+g(x)=g(x)+f(x)\,\,\forall f(x),g(x)\in\mathbb{K}[x].

3) f(x)+0=0+f(x)=f(x)\,\,\forall f(x)\in\mathbb{K}[x].

4) Với mỗi f(x)\in\mathbb{K}[x] có duy nhất g(x)\in\mathbb{K}[x] thỏa mãn f(x)+g(x)=g(x)+f(x)=0.

Đa thức g(x) sẽ được kí hiệu bởi -f(x) và được gọi là đa thức đối của đa thức f(x). Từ đây với mỗi f(x),g(x)\in\mathbb{K}[x] ta có thể định nghĩa hiệu của f(x)g(x), kí hiệu f(x)-g(x), bởi f(x)+(-g(x)).

Định lí 2.

1) f(x)(g(x)h(x))=(f(x)g(x))h(x)\,\,\forall f(x),g(x),h(x)\in\mathbb{K}[x].

Với đa thức f(x) và số nguyên dương n, đa thức f(x)f(x)\cdots f(x) (n chữ f) sẽ được ký hiệu bởi f^n(x) hoặc (f(x))^n.

2) f(x)g(x)=g(x)f(x)\,\,\forall f,g\in\mathbb{K}[x].

3) f(x)1=1f(x)=f(x)\,\,\forall f(x)\in\mathbb{K}[x].

4) f(x)(g(x)+h(x))=f(x)g(x)+f(x)h(x)\,\,\forall f(x),g(x),h(x)\in\mathbb{K}[x].

Xét hai đa thức f(x)g(x) với f(x)=a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0, khi đó đa thức

a_n(g(x))^n+a_{n-1}(g(x))^{n-1}+\cdots+a_1g(x)+a_0 sẽ được ký hiệu bởi f(g(x)).

Ví dụ 3. Cho hai đa thức P(x)=x^2-2x+11Q(x)=2x^2-3x+5. Tìm các đa thức P(x)+Q(x),P(x)-Q(x),P(x)Q(x),P(Q(x))Q(P(x)).

Định lí 3. Cho P(x),Q(x) là các đa thức khác hằng. Khi đó

1) \deg (P(x)+Q(x))\leq\max (\deg P(x),\deg Q(x)).

2) \deg (P(x)Q(x))=\deg P(x)+\deg Q(x).

3) \deg (P(Q(x))=\deg (Q(P(x))=\deg P\deg Q.

3. Bài tập

Bài 1.  Tìm tất cả các số thực a,b sao cho đa thức x^4+4x^3+ax^2+bx+1 là bình phương của một đa thức với hệ số thực.

Bài 2. Cho P là một đa thức với hệ số thực thỏa mãn P^2 là đa thức của x^2. Chứng minh rằng P hoặc P/x cũng là đa thức của x^2.

Bài 3. Cho số nguyên dương n và đa thức f(x)=\sum a_ix^i có bậc n. Lập đa thức (x-b)f(x)=\sum c_ix^i với b là số thực nào đấy. Chứng minh rằng A\leq (n+1)C, ở đây A=\max |a_i|C=\max |c_i|.

Bài 4. Cho PQ là các đa thức monic với hệ số thực thỏa mãn P(P(x))=Q(Q(x)). Chứng minh rằng P=Q.

Continue reading “Mở đầu về đa thức”

Luyện tập về phương trình bậc hai (2)


Các bạn có thể xem phần trước ở https://nttuan.org/2017/03/07/topic-868/

Bài 16. Cho phương trình x^2-2mx+m^2-m+1=0.

a/. Giải phương trình với m=1;

b/. Tìm m để phương trình có hai nghiệm phân biệt x_1,x_2;

c/. Với điều kiện của b/, hãy tìm m để A=x_1x_2-x_1-x_2 đạt giá trị bé nhất;

d/. Với điều kiện của b/, hãy tìm m để x_1+3x_2=4.

Bài 17. Cho phương trình x^2-2mx-1=0.

a/. Chứng minh rằng với mỗi m, phương trình có hai nghiệm phân biệt;

b/. Tìm m để hai nghiệm x_1,x_2 của phương trình thỏa mãn x_1^2+x_2^2-x_1x_2=7.

Bài 18. Cho phương trình x^2+2mx+m-1=0.

a/. Giải phương trình khi m=2;

b/. Chứng minh rằng với mỗi m, phương trình có hai nghiệm phân biệt;

c/. Tìm m để phương trình có nghiệm dương. Continue reading “Luyện tập về phương trình bậc hai (2)”

Luyện tập về phương trình bậc hai (1)


Các học sinh có thể ôn lại các dạng bài về phương trình bậc hai tại https://nttuan.org/2010/05/01/topic-49/

Bài 1. Tìm m\in\mathbb{Z} để x^4+2mx^2+18=0 có bốn nghiệm phân biệt x_1,x_2,x_3,x_4 sao cho \dfrac{x_1^4+x_2^4+x_3^4+x_4^4}{2} là bình phương của một số nguyên dương.

Bài 2. Cho phương trình x^2-2(m+1)x+2m-2=0.

a) Chứng minh phương trình có hai nghiệm phân biệt với mỗi m;

b) Gọi hai nghiệm là x_1,x_2. Tính theo m giá trị của

x_1^2+2(m+1)x_2+2m-2.

Bài 3. Cho phương trình mx^3-(m^2+1)x^2-m^2x+m+1=0\quad (1).

a) Chứng minh x=-1 là một nghiệm của (1);

b) Tìm m để (1) có ba nghiệm phân biệt.

Bài 4. Cho phương trình x^2-2(m+2)x+6m+1=0 với x là ẩn số và m là tham số.

a) Chứng minh rằng phương trình luôn có hai nghiệm phân biệt với mọi giá trị của m;

b) Tìm m để phương trình có hai nghiệm lớn hơn 2.

Bài 5. Cho phương trình x^2-6x+m+1=0.

a) Tìm m để phương trình có nghiệm x=2;

b) Tìm m để phương trình có hai nghiệm x_1,x_2 thoả mãn x_1^2+x_2^2=26.

Bài 6. Tìm các giá trị k để hai phương trình x^2+kx+1=0x^2+x+k=0 có nghiệm chung.

Bài 7. Tìm m để phương trình x^4-2mx^2+m^2-25=0 có bốn nghiệm phân biệt. Khi đó, gọi các nghiệm là x_1,x_2,x_3,x_4. Chứng minh rằng biểu thức \dfrac{1}{x_1x_2x_3}+\dfrac{1}{x_2x_3x_4}+\dfrac{1}{x_3x_4x_1}+\dfrac{1}{x_4x_1x_2} có giá trị không phụ thuộc m.

Bài 8. Giả sử phương trình x^2-mx-1=0 có hai nghiệm là x_1,x_2. Không giải phương trình hãy tính x_1-x_2.

Bài 9. Chứng minh rằng với mỗi m\in\mathbb{R} ít nhất một trong hai phương trình sau vô nghiệm

x^2+(m-1)x+2m^2=0,\quad\quad\quad x^2+4mx-m+2=0.

Bài 10. Xét phương trình x^4-2(m^2+2)x^2+5m^2+3=0\quad (1).

a) Chứng minh rằng với mỗi m, phương trình (1) luôn có bốn nghiệm phân biệt;

b) Gọi các nghiệm là x_1,x_2,x_3,x_4. Tính theo m giá trị của biểu thức

M=\dfrac{1}{x_1^2}+\dfrac{1}{x_2^2}+\dfrac{1}{x_3^2}+\dfrac{1}{x_4^2}.

Bài 11. Xét phương trình mx^2+(2m-1)x+m-2=0.

a) Tìm m để phương trình có hai nghiệm x_1,x_2 thoả mãn x_1^2+x_2^2-x_1x_2=4;

b) Chứng minh rằng nếu m là tích của hai số tự nhiên liên tiếp thì phương trình có nghiệm hữu tỷ.

Bài 12. Cho phương trình x^2-2(a-1)x+2a-5=0\quad (1).

a) Chứng minh (1) có nghiệm với mỗi a;

b) Với giá trị nào của a thì (1) có hai nghiệm x_1,x_2 thoả mãn x_1<1<x_2;

c) Tìm a để (1) có hai nghiệm x_1,x_2 thoả mãn x_1^2+x_2^2=6.

Bài 13. Cho phương trình bậc hai

x^2-2(m-1)x+2mn-m^2-2n^2=0, ở đây m,n là các tham số. Chứng minh rằng phương trình đã cho không thể có nghiệm kép với mỗi m,n.

Bài 14. Cho phương trình x^2-2x-3m^2=0, với m là tham số.

1) Giải phương trình khi m = 1.

2) Tìm tất cả các giá trị của m để phương trình có hai nghiệm x_1, x_2 khác 0 và thỏa điều kiện

\displaystyle \frac{{{x}_{1}}}{{{x}_{2}}}-\frac{{{x}_{2}}}{{{x}_{1}}}=\frac{8}{3}.

Bài 15. Tìm m để x^2-4x-2m|x-2|-m+6=0 vô nghiệm.

Kiểm tra – 2/3/2017


Bài 1.

1) Giải bất phương trình {{x}^{2}}+x-2+2\sqrt{x+2}\ge 0.

2) Giải hệ phương trình \begin{cases}xy-2x+y=8 \\{{x}^{2}}+{{y}^{2}}-5x-11y+34=0.\end{cases}

Bài 2.

1) Tìm tất cả các cặp số nguyên tố (p;q) sao cho {{p}^{2}}+{{q}^{2}}+4 cũng là một số nguyên tố.

2) Tìm tất cả các cặp số nguyên dương (m;n) sao cho (3m-1) chia hết cho n(3n-1) chia hết cho m. Continue reading “Kiểm tra – 2/3/2017”

Số nghiệm của phương trình ax+by=n


Bài viết giới thiệu một công thức tính số nghiệm tự nhiên của phương trình ax+by=n và áp dụng công thức đó vào giải bài toán Frobenius với một tập có hai phần tử. Ở cuối bài viết chúng tôi cũng giới thiệu một số bài toán thi chọn học sinh giỏi liên quan.

1. Công thức Popoviciu

Trong mục này chúng tôi sẽ giới thiệu một công thức tính số nghiệm tự nhiên của phương trình ax+by=n, ở đây a,b là các số nguyên dương thỏa mãn \gcd (a,b)=1n là số tự nhiên.

Định lí 1. (Công thức Popoviciu)  Gọi N(a,b;n) là số các cặp số tự nhiên (x,y) sao cho ax+by=n, ở đây a,b là các số nguyên dương thỏa mãn \gcd (a,b)=1n là số tự nhiên. Khi đó

\displaystyle N(a,b;n)=\frac{n}{ab}-\left\{\frac{a^{-1}n}{b}\right\}-\left\{\frac{b^{-1}n}{a}\right\}+1, với a^{-1} là nghịch đảo modulo b của ab^{-1} là nghịch đảo modulo a của b.

Chứng minh. Gọi \displaystyle F(z)=\sum_{n=0}^{+\infty}N(a,b;n)z^n là hàm sinh của dãy số \{N(a,b;n)\}_{n\geq 0}. Ta có

\displaystyle F(z)=\sum_{k\in\mathbb{N}}\sum_{l\in\mathbb{N}}z^{ak}z^{bl}=\frac{1}{(1-z^a)(1-z^b)}.\quad (1)

\gcd (a,b)=1 nên đa thức (1-z^a)(1-z^b) có nghiệm là 1 với bội 2 và các nghiệm đơn \xi_a^k (k=1,2,\ldots,a-1), \xi_b^l (l=1,2,\ldots,b-1), ở đây \xi_a=\cos\dfrac{2\pi}{a}+i\sin \dfrac{2\pi}{a}\xi_b=\cos\dfrac{2\pi}{b}+i\sin \dfrac{2\pi}{b}. Kết hợp với (1) ta có tồn tại các số phức C_1,C_2; A_i; B_i sao cho

\displaystyle F(z)=\frac{C_1}{1-z}+\frac{C_2}{(1-z)^2}+\sum_{k=1}^{a-1}\frac{A_k}{1-\xi_a^{-k}z}+\sum_{l=1}^{b-1}\frac{B_l}{1-\xi_b^{-l}z}.\quad (2)

Để ý đến hệ số của z^n, từ (2) ta có

\displaystyle N(a,b;n)=C_1+C_2(n+1)+\sum_{k=1}^{a-1}A_k\xi_a^{-nk}+\sum_{l=1}^{b-1}B_l\xi_b^{-nl}.\quad (3)

Bây giờ ta sẽ đi tìm các số phức C_1,C_2; A_i; B_i từ đẳng thức

\displaystyle \frac{1}{(1-z^a)(1-z^b)}=\frac{C_1}{1-z}+\frac{C_2}{(1-z)^2}+\sum_{k=1}^{a-1}\frac{A_k}{1-\xi_a^{-k}z}+\sum_{l=1}^{b-1}\frac{B_l}{1-\xi_b^{-l}z}.\quad (4)

Nhân hai vế của (4) với (1-z)^2 và cho z\to 1 ta có C_2=\dfrac{1}{ab}, sau đó nhân hai vế của (4) với 1-z, để C_1 một bên và cho z\to 1 ta được C_1=\dfrac{a+b-2}{2ab}. Theo cùng một cách ta có

\displaystyle A_k=\frac{1}{a(1-\xi_a^{kb})},\quad B_l=\frac{1}{b(1-\xi_b^{la})}.

Thay vào (3) ta được

\displaystyle N(a,b;n)=\frac{n}{ab}+\frac{a+b}{2ab}+\frac{1}{a}\sum_{k=1}^{a-1}\frac{\xi_a^{-nk}}{1-\xi_a^{bk}}+\frac{1}{b}\sum_{l=1}^{b-1}\frac{\xi_b^{-nl}}{1-\xi_b^{al}}.\quad (5)

Từ (5) ta có \displaystyle N(a,1;n)=\frac{n}{a}+\frac{a+1}{2a}+\frac{1}{a}\sum_{k=1}^{a-1}\frac{\xi_a^{-nk}}{1-\xi_a^{k}}, mà \displaystyle N(a,1;n)=\left[\frac{n}{a}\right]+1, suy ra

\displaystyle \frac{1}{a}\sum_{k=1}^{a-1}\frac{\xi_a^{-nk}}{1-\xi_a^{k}}=\frac{1}{2}-\left\{\frac{n}{a}\right\}-\frac{1}{2a},

do đó \displaystyle \frac{1}{a}\sum_{k=1}^{a-1}\frac{\xi_a^{-nk}}{1-\xi_a^{bk}}=\frac{1}{a}\sum_{k=1}^{a-1}\frac{\xi_a^{-nb^{-1}k}}{1-\xi_a^{k}}=\frac{1}{2}-\left\{\frac{nb^{-1}}{a}\right\}-\frac{1}{2a},

chứng minh tương tự ta được

\displaystyle \frac{1}{b}\sum_{l=1}^{b-1}\frac{\xi_b^{-nl}}{1-\xi_b^{al}}=\frac{1}{2}-\left\{\frac{na^{-1}}{b}\right\}-\frac{1}{2b},

thay hai đẳng thức cuối cùng vào (5) ta có điều cần chứng minh. \Box

2. Áp dụng vào bài toán Frobenius

Giả sử ở ngân hàng chỉ còn hai loại tiền 3 đồng và 5 đồng. Tôi có một tờ n\, (n\in\mathbb{N}^*) đồng. Liệu tôi có thể đem tờ n đồng đó đến ngân hàng để đổi lấy các tờ 3 hay 5 đồng được không? Rõ ràng không phải lúc nào cũng đổi được (chẳng hạn n=4) và với n đủ lớn ta luôn đổi được. Một câu hỏi tự nhiên là: n lớn nhất bằng bao nhiêu để không đổi được? (Câu hỏi này lần đầu tiên được đặt ra bởi Frobenius). Continue reading “Số nghiệm của phương trình ax+by=n”

Tính bất khả quy của các đa thức chia đường tròn


Các đa thức chia đường tròn là bất khả quy trên \mathbb{Q}. Bài viết sau của Steven H. Weintraub giới thiệu một số chứng minh cổ điển của kết quả này.

Các kết quả khác về các đa thức này có ở link https://nttuan.org/2017/02/09/topic-861/

Continue reading “Tính bất khả quy của các đa thức chia đường tròn”

Đa thức chia đường tròn và dạng yếu của định lí Dirichlet


Trong bài này, qua các bài toán tôi sẽ giới thiệu các tính chất của các đa thức chia đường tròn, từ các tính chất đó tôi giới thiệu dạng yếu của định lí Dirichlet. Phần cuối của bài viết là một số bài toán thi chọn học sinh giỏi liên quan. Bạn đọc có thể xem thêm về định lí Dirichlet tại https://nttuan.org/2016/02/11/topic-746/.

Định nghĩa. Cho số nguyên dương n. Đa thức chia đường tròn thứ n, ký hiệu \Phi_n, là đa thức monic có các nghiệm là các căn nguyên thủy bậc n của đơn vị, nghĩa là \displaystyle \Phi_n(x)=\prod_{\omega_n\in U_n}(x-\omega_n), ở đây U_n là tập tất cả các căn nguyên thủy bậc n của đơn vị.

|U_n|=\varphi (n)\,\,\forall n\geq 1 nên \deg\Phi_n=\varphi (n)\,\,\forall n\geq 1.

Ví dụ. 10 đa thức chia đường tròn đầu tiên là

\Phi_1(x)=x-1,\,\, \Phi_2(x)=x+1,\,\, \Phi_3(x)=x^2+x+1,\,\, \Phi_4(x)=x^2+1,

\Phi_5(x)=x^4+x^3+x^2+x+1,\,\, \Phi_6(x)=x^2-x+1,\,\,\Phi_7(x)=x^6+x^5+x^4+x^3+x^2+x+1,

\Phi_8(x)=x^4+1,\,\, \Phi_9(x)=x^6+x^3+1,\,\,\Phi_{10}(x)=x^4-x^3+x^2-x+1.

Bài 1. Chứng minh rằng với mỗi số nguyên dương n ta có \displaystyle x^n-1=\prod_{d|n}\Phi_d(x). Từ đó suy ra \displaystyle n=\sum_{d|n}\varphi (d).

Bài 2. Chứng minh \Phi_n(x)\in\mathbb{Z}[x]\,\,\forall n\geq 1.

Bài 3. Chứng minh rằng nếu an là các số nguyên dương nguyên tố cùng nhau thì \Phi_n(x^a)=\prod_{d|a}\Phi_{nd}(x).

Bài 4. Cho số nguyên dương n và số nguyên tố p. Chứng minh rằng

\displaystyle \Phi_{pn}(x)=\begin{cases}\Phi_n(x^p),\quad p|n\\ \frac{\Phi_n(x^p)}{\Phi_n(x)},\quad p\not|n.\end{cases}

Bài 5. Cho số nguyên dương n, d<n là một ước dương của n, và a là một số nguyên. Giả sử p là một ước nguyên tố chung của \Phi_n(a)\Phi_d(a). Chứng minh rằng p|n.

Bài 6. Cho mn là các số nguyên dương. Giả sử rằng tồn tại số nguyên a sao cho \gcd (\Phi_m(a),\Phi_n(a))>1. Chứng minh rằng \dfrac{m}{n} là lũy thừa nguyên của một số nguyên tố.

Bài 7. Cho số nguyên dương n và số nguyên a. Chứng minh rằng mỗi ước nguyên tố p của \Phi_n(a) phải thỏa mãn p|n hoặc p\equiv 1\pmod{n}.

Bài 8. (Dạng yếu của định lý Dirichlet) Cho số nguyên dương n. Chứng minh rằng có vô hạn số nguyên tố p thỏa mãn p\equiv 1\pmod{n}. Continue reading “Đa thức chia đường tròn và dạng yếu của định lí Dirichlet”