Đề thi chọn đội tuyển IMO 2019 của Mỹ


Ngày thứ nhất
Bài 1. Cho tam giác \displaystyle ABC. Gọi \displaystyle M\displaystyle N lần lượt là trung điểm của \displaystyle AB\displaystyle AC. Gọi \displaystyle X là điểm sao cho \displaystyle AX tiếp xúc với đường tròn ngoại tiếp tam giác \displaystyle ABC. Ký hiệu \displaystyle \omega_B là đường tròn qua \displaystyle M, \displaystyle B và tiếp xúc với \displaystyle MX, \displaystyle \omega_C là đường tròn qua \displaystyle N, \displaystyle C và tiếp xúc với \displaystyle NX. Chứng minh rằng \displaystyle \omega_B\displaystyle \omega_C cắt nhau trên \displaystyle BC.
Bài 2. Tìm tất cả các số nguyên dương \displaystyle n sao cho tồn tại một song ánh \displaystyle g: \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z} để \displaystyle 101 hàm \displaystyle g(x), \quad g(x) + x, \quad g(x) + 2x, \quad \dots, \quad g(x) + 100x là song ánh trên \displaystyle \mathbb{Z}/n\mathbb{Z}.
Bài 3. Một con rắn độ dài \displaystyle k là một động vật nằm ở bộ \displaystyle (s_1, \dots, s_k) gồm \displaystyle k ô vuông con của bảng \displaystyle n \times n các ô vuông con, các ô vuông con này đôi một khác nhau, đồng thời \displaystyle s_i\displaystyle s_{i+1} có chung cạnh với mọi \displaystyle i = 1, \dots, k-1. Nếu con rắn nằm ở \displaystyle (s_1, \dots, s_k)\displaystyle s là một ô vuông con không thuộc bộ đó và có chung cạnh với \displaystyle s_1, thì nó có thể di chuyển đến \displaystyle (s, s_1, \dots, s_{k-1}). Con rắn được gọi là quay lại nếu lúc đầu nó ở vị trí \displaystyle (s_1, s_2, \dots, s_k) và sau một số hữu hạn lần di chuyển nó ở vị trí \displaystyle (s_k, s_{k-1}, \dots, s_1). Tồn tại hay không số nguyên \displaystyle n > 1 có tính chất: có thể đặt một con rắn độ dài \displaystyle 0.9n^2 trong một bảng \displaystyle n \times n sao cho nó có thể quay đầu. Continue reading “Đề thi chọn đội tuyển IMO 2019 của Mỹ”

Đề thi chọn HSG Quốc gia của Mỹ năm 2019


Ngày thứ nhất
Bài 1. Cho hàm số \displaystyle f:\mathbb{N}^*\to\mathbb{N}^* thỏa mãn
\displaystyle \forall n\in\mathbb{N}^*,\quad \underbrace{f(f(\ldots f}_{f(n)}(n)\ldots))=\frac{n^2}{f(f(n))}. Tính f(1000).
Bài 2. Cho tứ giác nội tiếp \displaystyle ABCD thỏa mãn \displaystyle AD^2 + BC^2 = AB^2. Các đường chéo của \displaystyle ABCD cắt nhau tại \displaystyle E. Gọi \displaystyle P là một điểm trên cạnh \displaystyle AB thỏa mãn \displaystyle \angle APD = \angle BPC. Chứng minh \displaystyle PE chia đôi \displaystyle CD.
Bài 3. Cho \displaystyle K là tập tất cả các số nguyên dương không chứa chữ số \displaystyle 7 trong biểu diễn thập phân của nó. Tìm tất cả các đa thức \displaystyle f với hệ số nguyên sao cho \displaystyle f(n)\in K mỗi khi \displaystyle n\in K.

Ngày thứ hai
Bài 4. Cho số tự nhiên n. Có bao nhiêu cách chọn \displaystyle (n+1)^2 tập hợp \displaystyle S_{i,j}\subseteq\{1,2,\ldots,2n\}, với \displaystyle 0\leq i,j\leq n, sao cho hai điều kiện sau được thỏa mãn đồng thời:
1) Với mỗi \displaystyle 0\leq i,j\leq n, \displaystyle S_{i,j}\displaystyle i+j phần tử;
2) \displaystyle S_{i,j}\subseteq S_{k,l} mỗi khi \displaystyle 0\leq i\leq k\leq n\displaystyle 0\leq j\leq l\leq n. Continue reading “Đề thi chọn HSG Quốc gia của Mỹ năm 2019”