IMO 2018 training (1)


Chào các bạn đồng nghiệp,

đây là một số bài toán tôi dùng để luyện cho đội IMO 2018. Tuyển tập này gồm nhiều phần, đây là phần thứ nhất.

Bài 1. Cho \displaystyle a_1, a_2, \dots, a_{2^{2018}} là các số nguyên dương không lớn hơn \displaystyle 2018 sao cho với mỗi \displaystyle n \leq 2^{2018}, \displaystyle a_1a_2 \dots a_{n} +1 là số chính phương. Chứng minh rằng tồn tại \displaystyle i sao cho \displaystyle a_i=1.
Bài 2. Cho \displaystyle (a_n)_{n\geq 1} là một dãy các số nguyên dương thỏa mãn
\displaystyle a_{n+1}=[\sqrt{a_n}]+[\sqrt[3]{a_n}]+\cdots+[\sqrt[n+1]{a_n}],\quad \forall n\in\mathbb{N}^*. Chứng minh rằng với mỗi số nguyên tố \displaystyle p, có vô hạn các số hạng của dãy chia hết cho \displaystyle p.
Bài 3. Cho số nguyên \displaystyle k>1. Dãy số \displaystyle a_1,a_2, \cdots xác định bởi \displaystyle a_1=1, a_2=k\displaystyle a_{n+1}-(k+1)a_n+a_{n-1}=0,\,\forall n>1. Tìm tất cả các số nguyên dương \displaystyle n sao cho \displaystyle a_n là một lũy thừa của \displaystyle k.
Bài 4. Hai dãy số \displaystyle \{u_{n}\}, \displaystyle \{v_{n}\} xác định bởi \displaystyle u_{0} =u_{1} =1 ,\displaystyle u_{n}=2u_{n-1}-3u_{n-2} \displaystyle (n\geq 2), \displaystyle v_{0} =a, v_{1} =b , v_{2}=c ,\displaystyle v_{n}=v_{n-1}-3v_{n-2}+27v_{n-3} \displaystyle (n\geq 3). Giả sử có số nguyên dương \displaystyle N sao cho với mỗi \displaystyle n> N ta có \displaystyle u_{n}|v_{n}. Chứng minh rằng \displaystyle 3a=2b+c.
Bài 5. Với mỗi số thực \displaystyle x, gọi \displaystyle M(x) là tập tất cả các số nguyên dương \displaystyle q thỏa mãn: tồn tại số nguyên \displaystyle p sao cho \displaystyle \left|x - \dfrac{p}{q}\right|<\dfrac{1}{10q}. Chứng minh nếu hai số vô tỷ \displaystyle \alpha\displaystyle \beta thỏa mãn \displaystyle M(\alpha)=M(\beta) thì \displaystyle \alpha+\beta hoặc \displaystyle \alpha- \beta là một số nguyên.
Bài 6. Cho \displaystyle M là một tập con của \displaystyle \mathbb{R} thỏa mãn đồng thời các điều kiện:
a) Với mọi \displaystyle x \in M, n \in \mathbb{Z}, ta có \displaystyle x+n \in M.
b) Với mọi \displaystyle x \in M, ta có \displaystyle -x \in M.
c) \displaystyle M\displaystyle \mathbb{R}\setminus M chứa một đoạn có độ dài lớn hơn \displaystyle 0.
Với mỗi \displaystyle x, đặt \displaystyle M(x) = \{ n \in \mathbb{Z}^{+} | nx \in M \}. Chứng minh rằng nếu \displaystyle \alpha,\beta là các số vô tỷ thỏa mãn \displaystyle M(\alpha) = M(\beta) thì \displaystyle \alpha + \beta hoặc \displaystyle \alpha - \beta là số hữu tỷ.
Bài 7. Với mỗi điểm nguyên ta vẽ một hình tròn tâm tại đó và có bán kính \displaystyle \dfrac{1}{1000}.
a) Chứng minh rằng tồn tại một tam giác đều có các đỉnh thuộc phần trong của các hình tròn khác nhau;
b) Chứng minh rằng mọi tam giác như phần a) đều có độ dài cạnh lớn hơn \displaystyle 96.
Bài 8. Với mỗi số thực dương \displaystyle x, đặt \displaystyle A(x)=\{[nx]|n=1,2,\cdots\}. Tìm tất cả các số vô tỷ \displaystyle \alpha>1 sao cho nếu \displaystyle \beta là số thực dương thỏa mãn \displaystyle A(\beta)\subset A(\alpha) thì \displaystyle \dfrac{\beta}{\alpha}\in\mathbb{Z}.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

w

Connecting to %s