Đề thi chọn đội tuyển Trung Quốc tham dự IMO 2017 (China TST 2017) – Phần 5


Các bạn có thể xem phần 4 tại https://nttuan.org/2018/03/07/chinatst2017-test4/

Ngày thứ nhất
Bài 1. Cho số nguyên \displaystyle n\ge 3. Xét dãy \displaystyle a_1,a_2,...,a_n, nếu \displaystyle (a_i,a_j,a_k) thỏa mãn \displaystyle i+k=2j\, (i<j<k)\displaystyle a_i+a_k\ne 2a_j ta nói nó là tốt. Nếu một dãy chứa ít nhất một bộ ba tốt thì nó chứa ít nhất bao nhiêu bộ ba tốt?
Bài 2. Tìm số nguyên dương \displaystyle m nhỏ nhất có tính chất: với mỗi đa thức \displaystyle f(x) với hệ số thực, tồn tại đa thức \displaystyle g(x) với hệ số thực có bậc không lớn hơn $m$ sao cho tồn tại \displaystyle 2017 số khác nhau \displaystyle a_1,a_2,...,a_{2017} thỏa mãn \displaystyle g(a_i)=f(a_{i+1}) với mọi \displaystyle i=1,2,...,2017. Ở đây chỉ số lấy theo modulo \displaystyle 2017.
Bài 3. Với một điểm hữu tỷ \displaystyle (x,y), nếu \displaystyle xy là số nguyên chia hết cho \displaystyle 2 nhưng không chia hết cho \displaystyle 3 ta tô nó màu đỏ, nếu \displaystyle xy là số nguyên chia hết cho \displaystyle 3 nhưng không chia hết cho \displaystyle 2 ta tô nó màu xanh. Tồn tại hay không một đoạn thẳng chứa đúng \displaystyle 2017 điểm xanh và đúng \displaystyle 58 điểm đỏ? Continue reading “Đề thi chọn đội tuyển Trung Quốc tham dự IMO 2017 (China TST 2017) – Phần 5”

Đề thi chọn đội tuyển Trung Quốc tham dự IMO 2017 (China TST 2017) – Phần 4


Các bạn có thể xem phần 3 tại https://nttuan.org/2017/04/14/topic-880/

Ngày thứ nhất
Bài 1. Chứng minh rằng \displaystyle\sum_{k=0}^{58}C_{2017+k}^{58-k}C_{2075-k}^{k}=\sum_{p=0}^{29}C_{4091-2p}^{58-2p}.
Bài 2. Cho tam giác \displaystyle ABC, đường tròn bàng tiếp góc \displaystyle A tiếp xúc với cạnh \displaystyle BC, đường thẳng \displaystyle AB\displaystyle AC lần lượt tại \displaystyle E,D,F. \displaystyle EZ là đường kính của đường tròn. \displaystyle B_1\displaystyle C_1 thuộc \displaystyle DF sao cho \displaystyle BB_1\perp{BC}, \displaystyle CC_1\perp{BC}. Đường thẳng \displaystyle ZB_1,ZC_1 cắt \displaystyle BC tại \displaystyle X,Y tương ứng. \displaystyle EZ cắt \displaystyle DF tại \displaystyle H, \displaystyle ZK vuông góc với \displaystyle FD tại \displaystyle K. Chứng minh rằng nếu \displaystyle H là trực tâm của tam giác \displaystyle XYZ thì \displaystyle H,K,X,Y cùng nằm trên một đường tròn.
Bài 3. Tìm số các bộ \displaystyle (x_1,...,x_{100}) thỏa mãn đồng thời ba điều kiện
i) \displaystyle x_1,...,x_{100}\in\{1,2,..,2017\};
ii) \displaystyle 2017|x_1+...+x_{100};
iii) \displaystyle 2017|x_1^2+...+x_{100}^2. Continue reading “Đề thi chọn đội tuyển Trung Quốc tham dự IMO 2017 (China TST 2017) – Phần 4”