IMO 2014 Shortlist – Number theory


Bài 1. Cho số nguyên \displaystyle n \ge 2, và tập \displaystyle A_n = \{2^n - 2^k\mid k \in \mathbb{Z},\, 0 \le k < n\}. Xác định số nguyên dương lớn nhất không thể viết thành tổng của một hoặc một vài phần tử (không nhất thiết phân biệt) của \displaystyle A_n.
Bài 2. Tìm tất cả các cặp số nguyên dương \displaystyle (x, y) sao cho \displaystyle \sqrt[3]{7x^2-13xy+7y^2}=|x-y|+1.
Bài 3. Với mỗi số nguyên dương \displaystyle n, ngân hàng phát hành các đồng xu với mệnh giá \displaystyle \frac{1}{n}. Cho một họ hữu hạn các đồng xu như vậy (không nhất thiết các đồng xu có mệnh giá khác nhau) sao cho tổng các mệnh giá của các đồng xu không vượt quá \displaystyle 99+\frac{1}{2}. Chứng minh rằng có thể chia họ này thành không quá \displaystyle 100 nhóm, sao cho tổng mệnh giá của các đồng xu trong mỗi nhóm không vượt quá \displaystyle 1.
Bài 4. Cho số nguyên \displaystyle n > 1 và dãy số \displaystyle (a_k )_{k\ge 1} xác định bởi \displaystyle a_k=\left[\frac{n^k}{k}\right],\,\,\forall k\geq 1. Chứng minh rằng dãy số \displaystyle (a_k )_{k\ge 1} chứa vô hạn số hạng lẻ.
Bài 5. Tìm tất cả các số nguyên tố \displaystyle p và các cặp số nguyên dương \displaystyle (x, y) sao cho \displaystyle x^{p -1} + y\displaystyle x + y^ {p -1} đều là các lũy thừa của \displaystyle p.
Bài 6. Cho \displaystyle a_1 < a_2 < \cdots <a_n là các số nguyên dương đôi một nguyên tố cùng nhau sao cho \displaystyle a_1 là số nguyên tố và \displaystyle a_1 \ge n + 2. Trên đoạn \displaystyle I = [0, a_1 a_2 \cdots a_n ] của trục số, đánh dấu tất cả các số nguyên chia hết cho ít nhất một trong các số \displaystyle a_1, \displaystyle a_2, \displaystyle \ldots, \displaystyle a_n. Các điểm này chia \displaystyle I thành các đoạn nhỏ hơn. Chứng minh rằng tổng bình phương của các độ dài của các đoạn đó chia hết cho \displaystyle a_1.
Bài 7. Cho số nguyên dương \displaystyle c. Xét dãy số \displaystyle (a_n)_{n\geq 1} xác định bởi \displaystyle a_1 = c\displaystyle a_{n+1}=a_n^3-4c\cdot a_n^2+5c^2\cdot a_n+c,\quad \forall n\ge 1. Chứng minh rằng với mọi số nguyên \displaystyle n \ge 2, tồn tại số nguyên tố \displaystyle p chia hết \displaystyle a_n nhưng không chia hết cho số nào trong các số \displaystyle a_1 , \ldots , a_{n-1}.
Bài 8. Với mỗi số thực \displaystyle x, ký hiệu \displaystyle ||x|| là khoảng cách giữa \displaystyle x và số nguyên gần nhất. Chứng minh rằng với mỗi cặp số nguyên dương \displaystyle (a, b), tồn tại số nguyên tố lẻ \displaystyle p và số nguyên dương \displaystyle k sao cho \displaystyle \left|\left|\frac{a}{p^k}\right|\right|+\left|\left|\frac{b}{p^k}\right|\right|+\left|\left|\frac{a+b}{p^k}\right|\right|=1.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s