IMO 2017 training (1)


Chào các bạn đồng nghiệp,

đây là một số bài toán tôi dùng để luyện cho đội IMO 2017. Tuyển tập này gồm nhiều phần, đây là phần thứ nhất.

Bài 1. Cho n-giác đều P. Chứng minh rằng nếu 3 trong các đỉnh của P là điểm nguyên và hai trong chúng là kề nhau thì P là hình vuông.
Bài 2. (Vietnam TST 2011) Có một con cào cào đậu ở điểm (1,1) trên mặt phẳng tọa độ Oxy. Từ điểm đó nó sẽ nhảy đến điểm nguyên khác theo quy tắc: nhảy được từ A đến B khi và chỉ khi diện tích của tam giác AOB bằng 1/2.
(a) Tìm tất cả các điểm nguyên dương (m,n) sao cho con cào cào có thể đến đó sau hữu hạn lần nhảy, bắt đầu từ (1,1).
(b) Nếu (m,n) thỏa mãn điều kiện trên. Chứng minh rằng con cào cào có thể đến (m,n) từ (1,1) sau nhiều nhất |m-n| lần nhảy.
Bài 3. Cho số nguyên n \ge 5. Xét các số nguyên a_i,b_i (i = 1,2, \cdots ,n) thỏa mãn đồng thời hai điều kiện:
(a) Các cặp (a_i,b_i) với i = 1,2,\cdots,n đôi một khác nhau;
(b) |a_1b_2-a_2b_1| = |a_2b_3-a_3b_2| = \cdots = |a_nb_1-a_1b_n| = 1.
Chứng minh rằng tồn tại các chỉ số i,j sao cho 1<|i-j|<n-1|a_ib_j-a_jb_i|=1.
Bài 4. Trong mặt phẳng tọa độ, tô màu các điểm nguyên với hoành độ và tung độ chẵn bởi màu đen và các điểm nguyên còn lại bởi màu trắng. Cho P là một đa giác lồi có các đỉnh là các điểm nguyên màu đen. Chứng minh rằng mỗi điểm nguyên trắng nằm bên trong hoặc trên biên của P sẽ nằm giữa hai điểm nguyên đen nằm trong hay trên biên của P.
Bài 5. Gọi PQ là hai tập hợp gồm tất cả các điểm nằm trong hay trên biên của hai đa giác lồi với các đỉnh có tọa độ nguyên. Chứng minh rằng nếu P\cap Q\ne\emptyset và không chứa điểm có tọa độ nguyên thì nó là một hình tứ giác lồi không suy biến.
Bài 6. Xét các số thực dương S có tính chất: Với mọi cách tô các điểm nguyên bởi một trong ba màu cho trước, tồn tại tam giác ABC có ba đỉnh cùng màu sao cho S_{\triangle ABC}=S. Tìm giá trị nhỏ nhất của S.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s