Đề thi chọn HSG Quốc gia của Nhật năm 2017


Bài 1. Cho các số nguyên dương a,bc. Chứng minh rằng [a,b]\not= [a+c,b+c].
Bài 2. Cho số nguyên dương N và các số nguyên dương a_{1}, a_{2},\cdots, a_{N} sao cho không có số nào là bội của 2^{N+1}. Với mỗi số nguyên n\geq N+1, xác định a_{n} như sau: Nếu dư khi chia a_{k} cho 2^{n} là bé nhất trong các dư khi chia a_{1},\cdots, a_{n-1} cho 2^{n}, thì a_{n}=2a_{k} (nếu có nhiều số k thỏa mãn, ta lấy số lớn nhất). Chứng minh rằng tồn tại số nguyên dương M sao cho a_{n}=a_{M} với mọi n\geq M.
Bài 3. Cho tam giác nhọn ABC với tâm ngoại tiếp O. Gọi D,EF lần lượt là chân các đường cao qua A,BC, và M là trung điểm của BC. AD cắt EF tại X, AO cắt BC tại Y, và Z là trung điểm của XY. Chứng minh A,ZM thẳng hàng.
Bài 4. Cho số nguyên n thỏa mãn n \geq 3. Có n người và một cuộc họp được tổ chức mỗi ngày một lần sao cho các điều kiện sau được thỏa mãn đồng thời:
(1) trong mỗi cuộc họp, có ít nhất ba người tham gia.
(2) mỗi thành viên tham gia một cuộc họp đều bắt tay với tất cả những người còn lại tham dự cuộc họp đó.
(3) sau cuộc họp thứ n, mỗi cặp trong n người bắt tay nhau đúng một lần.
Chứng minh rằng số người tham gia các cuộc họp là bằng nhau. Continue reading “Đề thi chọn HSG Quốc gia của Nhật năm 2017”

IMO 2016 Shortlist (*.pdf, full)


Tôi gửi tặng mọi người 2 file pdf: Một file là bản tiếng Việt ISL 2016 do tôi dịch, file còn lại là bản tiếng Anh chính thức.

Nếu có chỗ nào sai, hãy báo cho tôi.

Continue reading “IMO 2016 Shortlist (*.pdf, full)”

IMO 2017 training (1)


Chào các bạn đồng nghiệp,

đây là một số bài toán tôi dùng để luyện cho đội IMO 2017. Tuyển tập này gồm nhiều phần, đây là phần thứ nhất.

Bài 1. Cho n-giác đều P. Chứng minh rằng nếu 3 trong các đỉnh của P là điểm nguyên và hai trong chúng là kề nhau thì P là hình vuông.
Bài 2. (Vietnam TST 2011) Có một con cào cào đậu ở điểm (1,1) trên mặt phẳng tọa độ Oxy. Từ điểm đó nó sẽ nhảy đến điểm nguyên khác theo quy tắc: nhảy được từ A đến B khi và chỉ khi diện tích của tam giác AOB bằng 1/2.
(a) Tìm tất cả các điểm nguyên dương (m,n) sao cho con cào cào có thể đến đó sau hữu hạn lần nhảy, bắt đầu từ (1,1).
(b) Nếu (m,n) thỏa mãn điều kiện trên. Chứng minh rằng con cào cào có thể đến (m,n) từ (1,1) sau nhiều nhất |m-n| lần nhảy.
Bài 3. Cho số nguyên n \ge 5. Xét các số nguyên a_i,b_i (i = 1,2, \cdots ,n) thỏa mãn đồng thời hai điều kiện:
(a) Các cặp (a_i,b_i) với i = 1,2,\cdots,n đôi một khác nhau;
(b) |a_1b_2-a_2b_1| = |a_2b_3-a_3b_2| = \cdots = |a_nb_1-a_1b_n| = 1.
Chứng minh rằng tồn tại các chỉ số i,j sao cho 1<|i-j|<n-1|a_ib_j-a_jb_i|=1.
Bài 4. Trong mặt phẳng tọa độ, tô màu các điểm nguyên với hoành độ và tung độ chẵn bởi màu đen và các điểm nguyên còn lại bởi màu trắng. Cho P là một đa giác lồi có các đỉnh là các điểm nguyên màu đen. Chứng minh rằng mỗi điểm nguyên trắng nằm bên trong hoặc trên biên của P sẽ nằm giữa hai điểm nguyên đen nằm trong hay trên biên của P. Continue reading “IMO 2017 training (1)”