IMO 2016 Shortlist – Number theory


Các bạn có thể xem phần đầu ở https://nttuan.org/2017/07/20/imo-2016-shortlist-algebra/

N1. Với mỗi số nguyên dương \displaystyle k, gọi \displaystyle S(k) là tổng các chữ số của \displaystyle k khi viết trong hệ thập phân. Tìm tất cả \displaystyle P(x)\in\mathbb{Z}[x] sao cho với mỗi số nguyên \displaystyle n\geq 2016, số \displaystyle P(n) là số nguyên dương và \displaystyle S(P(n))=P(S(n)).
N2. Với mỗi số nguyên dương \displaystyle n, gọi \displaystyle \tau (n) là số ước dương của \displaystyle n\displaystyle \tau_1(n) là số ước dương của \displaystyle n chia cho \displaystyle 3\displaystyle 1. Tìm tất cả các giá trị nguyên có thể của \displaystyle \dfrac{\tau (10n)}{\tau_1(10n)}.
N3. Một tập hợp các số nguyên dương được gọi là tập hương nếu tập hợp đó có ít nhất hai phần tử và mỗi phần tử của nó đều có ước nguyên tố chung với ít nhất một trong các phần tử còn lại. Đặt \displaystyle P(n)=n^{2}+n+1. Hãy tìm số nguyên dương \displaystyle b nhỏ nhất sao cho tồn tại số nguyên không âm \displaystyle a để tập hợp \displaystyle \left \{ P(a+1);P(a+2);...;P(a+b) \right \} là tập hương.
N4. Cho các số nguyên dương \displaystyle n,m,k\displaystyle l thỏa mãn \displaystyle n\not=1\displaystyle n^k+m.n^l+1 chia hết \displaystyle n^{k+l}-1. Chứng minh rằng
(a) \displaystyle m=1\displaystyle l=2k hoặc
(b) \displaystyle l|k\displaystyle m=\dfrac{n^{k-l}-1}{n^l-1}.
N5. Cho \displaystyle a là số nguyên dương không chính phương. Gọi \displaystyle A là tập tất cả các số nguyên dương \displaystyle k sao cho \displaystyle k=\dfrac{x^2-a}{x^2-y^2},\quad (1) ở đây \displaystyle x\displaystyle y là các số nguyên thỏa mãn \displaystyle x>\sqrt{a}. Gọi \displaystyle B là tập tất cả các số nguyên dương \displaystyle k sao cho \displaystyle (1) đúng, với \displaystyle x\displaystyle y là các số nguyên thỏa mãn \displaystyle 0\leq x<\sqrt{a}. Chứng minh rằng \displaystyle A=B.
N6. Tìm tất cả các hàm \displaystyle f:\mathbb{N}^*\to\mathbb{N}^* sao cho với mỗi hai số nguyên dương \displaystyle m\displaystyle n, \displaystyle f(m)+f(n)-mn khác \displaystyle 0 và chia hết \displaystyle mf(m)+nf(n).
N7. Cho \displaystyle P=A_1A_2\cdots A_k là một đa giác lồi trong mặt phẳng. Các đỉnh \displaystyle A_1, \displaystyle A_2, \displaystyle \cdots, A_k có tọa độ nguyên và nằm trên một đường tròn. Gọi \displaystyle S là diện tích của \displaystyle P. Cho số nguyên dương lẻ \displaystyle n sao cho bình phương của độ dài các cạnh của \displaystyle P là các số nguyên chia hết cho \displaystyle n. Chứng minh rằng \displaystyle 2S là số nguyên chia hết cho \displaystyle n.
N8. Tìm tất cả \displaystyle P\in\mathbb{Z}[x] có bậc \displaystyle d lẻ và thỏa mãn điều kiện: với mỗi số nguyên dương \displaystyle n, tồn tại \displaystyle n số nguyên dương \displaystyle x_1, \displaystyle x_2,\cdots, \displaystyle x_n sao cho \displaystyle \frac{1}{2}<\frac{P(x_i)}{P(x_j)}<2\displaystyle \frac{P(x_i)}{P(x_j)} là lũy thừa bậc \displaystyle d của một số hữu tỷ với mọi cặp chỉ số \displaystyle (i,j)\in [n]^2.

2 thoughts on “IMO 2016 Shortlist – Number theory”

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s