China TST 2003 – Test 3/ Problem 3


Bài toán. Cho \displaystyle x_0+\sqrt{2003}y_0 là nghiệm nguyên dương nhỏ nhất của phương trình Pell \displaystyle x^2-2003y^2=1. Tìm tất cả các nghiệm nguyên dương \displaystyle (x,y) của phương trình sao cho \displaystyle x_0 chia hết cho mọi ước nguyên tố của \displaystyle x.

Lời giải. Từ giả thiết, tồn tại số nguyên dương \displaystyle n sao cho \displaystyle x+\sqrt{2003}y=(x_0+\sqrt{2003}y_0)^n.

Xét hai trường hợp:

Trường hợp 1: \displaystyle n chẵn.

Ta có \displaystyle x\equiv 2003^{n/2}y_0^n\pmod{x_0}, trái với giả thiết \displaystyle x_0 chia hết cho mọi ước nguyên tố của \displaystyle x. Continue reading “China TST 2003 – Test 3/ Problem 3”

China TST 2014 – Test 3/Problem 3


Bài toán.  Chứng minh rằng không tồn tại cặp (x,y) các số nguyên dương thỏa mãn \displaystyle (x+1) (x+2)\cdots (x+2014)= (y+1) (y+2)\cdots (y+4028).

Lời giải. Tồn tại số nguyên dương i sao cho \displaystyle v_2(x+i)=\max_{1\leq j\leq 2014} v_2(x+j). Suy ra với mỗi 1\leq j\leq 2014, j\not=i ta có v_2(x+j)=v_2(x+i+(j-i))=v_2(j-i), thật vậy, không thể có v_2(j-i)>v_2(x+i), vì nếu không, v_2(j-i)>v_2(x+i)\,\forall i, do đó v_2(j-i)\geq 11 vì trong vế trái sẽ có số chia hết cho 1024, suy ra |j-i|\geq 2^{11}, vô lý. Continue reading “China TST 2014 – Test 3/Problem 3”