USA JMO 2017


Ngày thứ nhất

Bài 1. Chứng minh rằng có vô hạn cặp số nguyên (a, b) sao cho a>1, b>1, (a,b)=1a^b+b^a chia hết cho a+b.

Bài 2. Xét phương trình (3x^3+xy^2)(x^2y+3y^3)=(x-y)^7.

(a) Chứng minh rằng phương trình có vô hạn nghiệm nguyên dương;

(b) Tìm tất cả nghiệm nguyên dương của phương trình.

Bài 3. Cho tam giác đều ABC và điểm P nằm trên đường tròn ngoại tiếp của nó. Gọi D là giao điểm của PABC, E là giao điểm của PBAC, F là giao điểm của PCAB. Chứng minh rằng diện tích của tam giác DEF gấp đôi diện tích của tam giác ABC.

Ngày thứ hai

Bài 4. Tồn tại hay không bộ ba các số nguyên dương (a,b,c) sao cho (a-2)(b-2)(c-2)+12 là một số nguyên tố và nó là ước thực sự của số nguyên dương a^2+b^2+c^2+abc-2017?

Bài 5. Cho OH lần lượt là tâm đường tròn ngoại tiếp và trực tâm của tam giác nhọn ABC. Các điểm MD nằm trên cạnh BC sao cho BM=CM\angle BAD = \angle CAD. Tia MO cắt đường tròn ngoại tiếp tam giác BHC tại N. Chứng minh rằng \angle ADO = \angle HAN. Continue reading “USA JMO 2017”