Đề thi chọn đội tuyển Trung Quốc tham dự IMO 2017 (China TST 2017) – Phần 1


Ngày thứ nhất

Bài 1. Cho hình bát diện đều T. Từ một điểm bên ngoài T có thể nhìn thấy nhiều nhất bao nhiêu cạnh của T? (Từ điểm P nhìn thấy được cạnh AB nếu giao của T và tam giác không suy biến PAB là đoạn AB).

Bài 2. Cho số thực x>1 và số nguyên dương n. Chứng minh rằng \displaystyle\sum_{k=1}^{n}\frac{\{kx \}}{[kx]}<\sum_{k=1}^{n}\frac{1}{2k-1}.

Bài 3. Cho S=\{1,2,3,...,2017\}. Với mọi tập con A của S, xác định số thực f(A)\geq 0 sao cho:

(1) Với mọi A,B\subset S, f(A\bigcup B)+f(A\bigcap B)\leq f(A)+f(B);

(2) Với mọi A\subset B\subset S, f(A)\leq f(B);

(3) Với mọi k,j\in S, f(\{1,2,...,k+1\})\geq f(\{1,2,...,k\}\bigcup \{j\});

(4) f(\varnothing)=0.

Chứng minh rằng với mọi tập con T có ba phần tử của S, ta có f(T)\leq \dfrac{27}{19}f(\{1,2,3\}).

Ngày thứ hai

Bài 4. Tìm tất cả các cặp số nguyên (m,n) sao cho tồn tại hai đa thức monic P(x)Q(x), với \deg{P}=m, \deg{Q}=nP(Q(t))\not=Q(P(t)),\quad\forall t\in\mathbb{R}. Continue reading “Đề thi chọn đội tuyển Trung Quốc tham dự IMO 2017 (China TST 2017) – Phần 1”