Luyện tập về phương trình bậc hai (1)


Các học sinh có thể ôn lại các dạng bài về phương trình bậc hai tại https://nttuan.org/2010/05/01/topic-49/

Bài 1. Tìm m\in\mathbb{Z} để x^4+2mx^2+18=0 có bốn nghiệm phân biệt x_1,x_2,x_3,x_4 sao cho \dfrac{x_1^4+x_2^4+x_3^4+x_4^4}{2} là bình phương của một số nguyên dương.

Bài 2. Cho phương trình x^2-2(m+1)x+2m-2=0.

a) Chứng minh phương trình có hai nghiệm phân biệt với mỗi m;

b) Gọi hai nghiệm là x_1,x_2. Tính theo m giá trị của

x_1^2+2(m+1)x_2+2m-2.

Bài 3. Cho phương trình mx^3-(m^2+1)x^2-m^2x+m+1=0\quad (1).

a) Chứng minh x=-1 là một nghiệm của (1);

b) Tìm m để (1) có ba nghiệm phân biệt.

Bài 4. Cho phương trình x^2-2(m+2)x+6m+1=0 với x là ẩn số và m là tham số.

a) Chứng minh rằng phương trình luôn có hai nghiệm phân biệt với mọi giá trị của m;

b) Tìm m để phương trình có hai nghiệm lớn hơn 2.

Bài 5. Cho phương trình x^2-6x+m+1=0.

a) Tìm m để phương trình có nghiệm x=2;

b) Tìm m để phương trình có hai nghiệm x_1,x_2 thoả mãn x_1^2+x_2^2=26.

Bài 6. Tìm các giá trị k để hai phương trình x^2+kx+1=0x^2+x+k=0 có nghiệm chung.

Bài 7. Tìm m để phương trình x^4-2mx^2+m^2-25=0 có bốn nghiệm phân biệt. Khi đó, gọi các nghiệm là x_1,x_2,x_3,x_4. Chứng minh rằng biểu thức \dfrac{1}{x_1x_2x_3}+\dfrac{1}{x_2x_3x_4}+\dfrac{1}{x_3x_4x_1}+\dfrac{1}{x_4x_1x_2} có giá trị không phụ thuộc m.

Bài 8. Giả sử phương trình x^2-mx-1=0 có hai nghiệm là x_1,x_2. Không giải phương trình hãy tính x_1-x_2.

Bài 9. Chứng minh rằng với mỗi m\in\mathbb{R} ít nhất một trong hai phương trình sau vô nghiệm

x^2+(m-1)x+2m^2=0,\quad\quad\quad x^2+4mx-m+2=0.

Bài 10. Xét phương trình x^4-2(m^2+2)x^2+5m^2+3=0\quad (1).

a) Chứng minh rằng với mỗi m, phương trình (1) luôn có bốn nghiệm phân biệt;

b) Gọi các nghiệm là x_1,x_2,x_3,x_4. Tính theo m giá trị của biểu thức

M=\dfrac{1}{x_1^2}+\dfrac{1}{x_2^2}+\dfrac{1}{x_3^2}+\dfrac{1}{x_4^2}.

Bài 11. Xét phương trình mx^2+(2m-1)x+m-2=0.

a) Tìm m để phương trình có hai nghiệm x_1,x_2 thoả mãn x_1^2+x_2^2-x_1x_2=4;

b) Chứng minh rằng nếu m là tích của hai số tự nhiên liên tiếp thì phương trình có nghiệm hữu tỷ.

Bài 12. Cho phương trình x^2-2(a-1)x+2a-5=0\quad (1).

a) Chứng minh (1) có nghiệm với mỗi a;

b) Với giá trị nào của a thì (1) có hai nghiệm x_1,x_2 thoả mãn x_1<1<x_2;

c) Tìm a để (1) có hai nghiệm x_1,x_2 thoả mãn x_1^2+x_2^2=6.

Bài 13. Cho phương trình bậc hai

x^2-2(m-1)x+2mn-m^2-2n^2=0, ở đây m,n là các tham số. Chứng minh rằng phương trình đã cho không thể có nghiệm kép với mỗi m,n.

Bài 14. Cho phương trình x^2-2x-3m^2=0, với m là tham số.

1) Giải phương trình khi m = 1.

2) Tìm tất cả các giá trị của m để phương trình có hai nghiệm x_1, x_2 khác 0 và thỏa điều kiện

\displaystyle \frac{{{x}_{1}}}{{{x}_{2}}}-\frac{{{x}_{2}}}{{{x}_{1}}}=\frac{8}{3}.

Bài 15. Tìm m để x^2-4x-2m|x-2|-m+6=0 vô nghiệm.

One thought on “Luyện tập về phương trình bậc hai (1)”

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s