Đa thức chia đường tròn và dạng yếu của định lí Dirichlet


Trong bài này, qua các bài toán tôi sẽ giới thiệu các tính chất của các đa thức chia đường tròn, từ các tính chất đó tôi giới thiệu dạng yếu của định lí Dirichlet. Phần cuối của bài viết là một số bài toán thi chọn học sinh giỏi liên quan. Bạn đọc có thể xem thêm về định lí Dirichlet tại https://nttuan.org/2016/02/11/topic-746/.

Định nghĩa. Cho số nguyên dương n. Đa thức chia đường tròn thứ n, ký hiệu \Phi_n, là đa thức monic có các nghiệm là các căn nguyên thủy bậc n của đơn vị, nghĩa là \displaystyle \Phi_n(x)=\prod_{\omega_n\in U_n}(x-\omega_n), ở đây U_n là tập tất cả các căn nguyên thủy bậc n của đơn vị.

|U_n|=\varphi (n)\,\,\forall n\geq 1 nên \deg\Phi_n=\varphi (n)\,\,\forall n\geq 1.

Ví dụ. 10 đa thức chia đường tròn đầu tiên là

\Phi_1(x)=x-1,\,\, \Phi_2(x)=x+1,\,\, \Phi_3(x)=x^2+x+1,\,\, \Phi_4(x)=x^2+1,

\Phi_5(x)=x^4+x^3+x^2+x+1,\,\, \Phi_6(x)=x^2-x+1,\,\,\Phi_7(x)=x^6+x^5+x^4+x^3+x^2+x+1,

\Phi_8(x)=x^4+1,\,\, \Phi_9(x)=x^6+x^3+1,\,\,\Phi_{10}(x)=x^4-x^3+x^2-x+1.

Bài 1. Chứng minh rằng với mỗi số nguyên dương n ta có \displaystyle x^n-1=\prod_{d|n}\Phi_d(x). Từ đó suy ra \displaystyle n=\sum_{d|n}\varphi (d).

Bài 2. Chứng minh \Phi_n(x)\in\mathbb{Z}[x]\,\,\forall n\geq 1.

Bài 3. Chứng minh rằng nếu an là các số nguyên dương nguyên tố cùng nhau thì \Phi_n(x^a)=\prod_{d|a}\Phi_{nd}(x).

Bài 4. Cho số nguyên dương n và số nguyên tố p. Chứng minh rằng

\displaystyle \Phi_{pn}(x)=\begin{cases}\Phi_n(x^p),\quad p|n\\ \frac{\Phi_n(x^p)}{\Phi_n(x)},\quad p\not|n.\end{cases}

Bài 5. Cho số nguyên dương n, d<n là một ước dương của n, và a là một số nguyên. Giả sử p là một ước nguyên tố chung của \Phi_n(a)\Phi_d(a). Chứng minh rằng p|n.

Bài 6. Cho mn là các số nguyên dương. Giả sử rằng tồn tại số nguyên a sao cho \gcd (\Phi_m(a),\Phi_n(a))>1. Chứng minh rằng \dfrac{m}{n} là lũy thừa nguyên của một số nguyên tố.

Bài 7. Cho số nguyên dương n và số nguyên a. Chứng minh rằng mỗi ước nguyên tố p của \Phi_n(a) phải thỏa mãn p|n hoặc p\equiv 1\pmod{n}.

Bài 8. (Dạng yếu của định lý Dirichlet) Cho số nguyên dương n. Chứng minh rằng có vô hạn số nguyên tố p thỏa mãn p\equiv 1\pmod{n}.

Bài 9. Cho m,n là các số nguyên dương. Chứng minh rằng tồn tại số nguyên dương a sao cho \varphi(a),\varphi(a+1),\dots,\varphi(a+n) là các bội của m.

Bài 10. Chứng minh rằng tồn tại vô hạn số nguyên dương n sao cho mỗi ước nguyên tố của n^2+n+1 không lớn hơn \sqrt{n}.

Bài 11. Tìm nghiệm nguyên của \dfrac{x^7-1}{x-1}=y^5-1.

Bài 12. Cho a>1 là một số nguyên dương. Chứng minh rằng mỗi số nguyên dương N có một bội nằm trong dãy (a_n)_{n\ge 1} xác định bởi a_n=\left[\dfrac{a^n}n\right]\,\,\forall n\geq 1.

Bài 13. Tìm tất cả các bộ ba (a,b,c) các số nguyên dương sao cho nếu n không chia hết cho mỗi số nguyên tố bé hơn 2014 thì n+c chia hết a^n+b^n+n.

Bài 14. Cho số nguyên dương nn số nguyên tố đôi một khác nhau p_1,p_2,\ldots,p_n. Chứng minh rằng 2^{p_1p_2\ldots p_n}+1 có ít nhất 2^{2^{n-1}} ước dương.

1 thought on “Đa thức chia đường tròn và dạng yếu của định lí Dirichlet”

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s