Balkan MO 2016


Bài 1. Tìm tất cả các đơn ánh f: \mathbb R \rightarrow \mathbb R sao cho với mọi số thực x và mọi số nguyên dương n ta có

\displaystyle\left|\sum_{i=1}^n i\left(f(x+i+1)-f(f(x+i))\right)\right|<2016.

Bài 2. Cho ABCD là tứ giác nội tiếp với AB<CD. Các đường chéo cắt nhau tại F và các đường thẳng ADBC cắt nhau tại E. Gọi KL là hình chiếu vuông góc của F trên ADBC tương ứng, và M, S, T là trung điểm của EF, CF, DF tương ứng. Chứng minh rằng giao điểm thứ hai của đường tròn ngoại tiếp tam giác MKT và đường tròn ngoại tiếp tam giác MLS nằm trên CD.

Bài 3. Tìm tất cả các đa thức monic f với hệ số nguyên sao cho tồn tại số nguyên dương N để p chia hết 2(f(p)!)+1 với mọi số nguyên tố p>N thỏa mãn f(p) là số nguyên dương.

Bài 4. Mặt phẳng được chia thành các hình vuông bởi hai tập các đường thẳng song song, hình thành một lưới vô hạn. Mỗi hình vuông đơn vị được tô bởi một trong 1201 màu sao cho không có hình chữ nhật với chu vi bằng 100 chứa hai hình vuông có cùng màu. Chứng minh rằng không có hình chữ nhật 1\times1201 hoặc 1201\times1 chứa hai hình vuông cùng màu.

(Mỗi hình chữ nhật có các cạnh nằm trên đường lưới.)

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s