Đề thi tuyển sinh vào lớp 10, trường THPT chuyên Hạ Long, môn Toán chung, năm học 1999-2000


Thời gian làm bài: 150 phút

Bài 1.

Cho biểu thức

P=\left(\dfrac{\sqrt{x}(\sqrt{x}+2)^2}{(\sqrt{x}+1)^2+3}-\dfrac{4}{2-\sqrt{x}}+\dfrac{8\sqrt{x}+32}{8-x\sqrt{x}}\right):\left(1-\dfrac{2}{2+\sqrt{x}}\right).

a)Rút gọn P;

b)Tính P nếu x=9-4\sqrt{5};

c)Tìm các giá trị chính phương của x để P nhận giá trị nguyên.

Bài 2.

Cho phương trình x^2-(m-1)x-m^2+m-2=0.

a)Giải phương trình với m=2;

b)Chứng minh rằng phương trình trên có hai nghiệm trái dấu nhau với mỗi m;

c)Gọi hai nghiệm là x_1,x_2. Tìm m để biểu thức

A=\left(\dfrac{x_1}{x_2}\right)^3+\left(\dfrac{x_2}{x_1}\right)^3

đạt giá trị lớn nhất.

Bài 3.

Cho đường tròn (O) bán kính R, A,B là hai điểm thuộc đường tròn đó AB<2R. C là một điểm thuộc tia AB và nằm ngoài đường tròn. Gọi Q là điểm chính giữa của cung nhỏ AB, qua Q kẻ đường kính PQ cắt AB tại D. Nối CP cắt đường tròn tại điểm thứ hai I khác P. QI cắt AC tại K.

a)Chứng minh rằng PDKI nội tiếp;

b)Nối APAI, chứng minh tam giác API đồng dạng với tam giác CBI;

c)Đường thẳng QC cắt (O) tại điểm thứ hai M khác Q. Chứng minh M thuộc đường tròn đi qua ba điểm K,I,C.

9 thoughts on “Đề thi tuyển sinh vào lớp 10, trường THPT chuyên Hạ Long, môn Toán chung, năm học 1999-2000”

  1. Em post bài sai cách rồi, cái câu hỏi em phải để vào ô post bài chứ? Bài 2c em có thể thử dùng bất đẳng thức Côsi. Nhưng phải chỉnh dấu. Đề này không có bài 4.

  2. Bài 2c thầy nhớ là hai nghiệm đối nhau là kết quả. Còn phần b và c của bài hình thì em dùng săn góc thôi.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s