Đề thi tuyển sinh vào lớp 10, trường THPT chuyên Hạ Long, môn Toán chuyên, năm học 2009-2010


Thời gian làm bài: 150 phút

Bài 1.

Cho phương trình x^2-2(m+2)x+6m+1=0 với x là ẩn số và m là tham số.

a)Chứng minh rằng phương trình luôn có hai nghiệm phân biệt với mọi giá trị của m;

b)Tìm m để phương trình có hai nghiệm lớn hơn 2.

Bài 2.

a)Cho a,b là các số dương thoả mãn a-\sqrt{ab}-6b=0. Tính giá trị của biểu thức P=\dfrac{a+b}{a+\sqrt{ab}+b};

b)Giải hệ phương trình \begin{cases}x^2-3y=2\\9y^2-8x=8.\end{cases}

Bài 3.

Cho các số thực a,b thoả mãn a+b\not =0. Chứng minh rằng

a^2+b^2+\left(\dfrac{1+ab}{a+b}\right)^2\geq 2.

Bài 4.

Cho hai đường tròn (O)(O') cắt nhau tại AB. Vẽ đường thẳng (d) qua A cắt (O) tại C và cắt (O') tại D sao cho A nằm giữa CD. Tiếp tuyến của (O) tại C và tiếp tuyến của (O') tại D cắt nhau tại E.

a)Chứng minh tứ giác BDEC nội tiếp;

b)Chứng minh BE\cdot DC=CB\cdot ED+BD\cdot CE.

Bài 5.

Cho tam giác ABC, trên tia BA lấy M, trên tia đối của tia CA lấy N sao cho BM=CN. Chứng minh rằng đường trung trực của MN luôn đi qua một điểm cố định.

1 thought on “Đề thi tuyển sinh vào lớp 10, trường THPT chuyên Hạ Long, môn Toán chuyên, năm học 2009-2010”

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s