Đề thi tuyển sinh vào lớp 10, trường THPT chuyên Hạ Long, môn Toán chuyên, năm học 2005-2006


Thời gian làm bài: 150 phút

Bài 1.

a)Cho a=\dfrac{2-\sqrt{2m}+m}{\sqrt{8}+m\sqrt{m}}b=\dfrac{1+\sqrt{2m}}{\sqrt{2}+\sqrt{m}} với m\geq 0. Hãy tìm một hệ thức liên hệ giữa a,b mà không phụ thuộc m.

b)Cho x,y là các số thực thoả mãn x^3+y^3=1x^7+y^7=x^4+y^4. Chứng minh rằng x+y=1.

Bài 2.

a)Tìm các số nguyên dương n để số p=n^3-n^2+n-1 là số nguyên tố;

b)Giải hệ phương trình \begin{cases}x+y+\dfrac{1}{x}+\dfrac{1}{y}=5\\ x^2+y^2+\dfrac{1}{x^2}+\dfrac{1}{y^2}=9.\end{cases}

Bài 3.

Tìm giá trị nhỏ nhất của biểu thức \dfrac{x^2+x+2}{\sqrt{x(x+1)+1}}(x\in\mathbb{R}).

Bài 4.

Cho hai đường tròn (O;R)(O';R')(với R>R') tiếp xúc ngoài nhau tại CAB là một tiếp tuyến chung ngoài của hai đường tròn(A\in (O),B\in (O')). Tia BC cắt (O) tại điểm thứ hai E, tia AC cắt (O') tại điểm thứ hai K.

a)Chứng minh rằng AE là đường kính của (O);

b)Tính AK^2+BE^2 theo RR';

c)Một đường thẳng (d) đi qua C cắt (O) tại P, cắt (O') tại Q(PQ khác C). Gọi M là trung điểm của PQ. Chứng minh rằng khi (d) quay quanh C, điểm M luôn thuộc một đường tròn cố định.

7 thoughts on “Đề thi tuyển sinh vào lớp 10, trường THPT chuyên Hạ Long, môn Toán chuyên, năm học 2005-2006”

  1. Bạn Mi thân mến, tôi phải đi dạy bây giờ. Tối tôi sẽ trả lời bạn, bây giờ bạn cứ tiếp tục làm các đề khác nhé! Trong blog này còn các đề của các năm khác nữa.

  2. Gợi ý: Bỏ hết những yếu tố không liên quan đến câu c) và chú ý đến tính đối xứng qua đường nối tâm của hình vẽ.

  3. Em thử đặt x^2+x+1=y xem. Nhớ là sau khi đánh giá phải kiểm tra xem dấu bằng có thể xảy ra hay không nhé!

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s